Chapter 2: EM Waves and properties



Waves, a reminder



Wave characteristics (1):
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Wave is a disturbance propagating though a medium. The disturbance moves, but the
medium itself does not. Physical waves come in two

varieties: transverse and longitudinal and are characterized by three
parameters: amplitude, frequency, and wavelength.

Both varieties are described by the same periodic function Y (x,t) = f(x + vt), where
v is the propagation velocity of the wave (disturbance/perturbation).

https://phet.colorado.edu/en/simulations/category/physics/sound-and-waves
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Wave characteristics (2):
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The disturbance y (its nature is not important) which moves in the positive x direction
with a constant velocity v, and must be a function of both positions x and time t and
can be expressed as y = f(x,t). The shape of ¥ at any instance, say at t = 0, can be
found by holding time constant at that value, i.e.:

Y = f(x,]=0=f(x,0) = f(x)

Representing the shape or profile of the wave at that time point.



In a way, the process is analogous to “taking” a
“‘photograph” of the disturbance as it travels by.

Propagation of a pulse on a spring. The section of
the spring moves up and down as the pulse travels

from left to right.
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Wave characteristics (3):
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Relating to ¥ (not deformed through space) in coordinate system S’, which travels
with the pulse at a speed v, ¥ is no longer a function of time, and as we move along
with §’, we see a stationary constant profile with the same functional form as at

t=0,i.e. ¥ =f(x,)]=0=f(x,0) =f(x) but for x’, ¥ = f(x)

According to the figure above, x'= x; -vt. Hence i can be written in terms of
the variables associated with the stationary S system as:

Y(x, t) = f(x —vt)
This then, represents the most general form of one-dimensional wave function.
It should be emphasized that one should only choose the shape (function), say
j(X), and then substitute (x — vt) for x in j(X), to make it a wave.

Hence, for instance, ¥(x,t) = Y,e~*vD" is a bell-shaped wave, traveling in the
positive x direction with a speed v.



Wave characteristics (4):

Does Y(x,t) = f(x + vt) = f(u) indeed addresses the partial wave function?

To prove that, we apply the chain rule for derivation [i.e. dx = %% . In our case:
ou au
Pl 1 and o = +v.
. oy _ 0pou _ Y op _dpou _ , 9P
Then: dx Odudx du and ot ouadt tv ou

Next, taking the second derivatives, one gets:

0% _ d (3w)ou _ dy % d (YOu_ L 0 2 0%
dx2 _du(ax)ax a8l and = _du(at)at =tvgztv=vign (]
2
Combining both results, a and b, to eliminate 2% 5oz + We get.
9%y _ 1 0%y

9x2 v 2 9t2

Proving that ¥(x,t) = f(x + vt) is a solution of the partial differential wave equation
independent of the form of the function f.



Wave characteristics (5): The vector significance of the wave number k

A wave front (upper figure) is a surface on
which points p; are affected in the same
way by a wave at a given time.

In other words: the surface on which points have
identical phases, i.e. ¢ = (k- 7+ wt) = constant [like
potential surface in electrostatics] for a given time
point.

The shortest form of the equation of a plane perpendicular
tokis: k-r = constant,i.e.
The product k - #; = krcos8; must be the same for every

7; (k is constant).

This yields a plane to which k must be perpendicular to
and 7; is the position of each point p; on this plane in
respect to a given origin).

A representative wave Y (r) and corresponding plane wave
fronts are given in the lower figure.

Wavefront for a harmonic plane wave

2/27/2020 Electromagnetism 8



Wave characteristics (6): Various shapes of waveforms

(a)

Wave fronts: plane (a), cylindrical (b) and spherical (c ). A-F 699
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1. Plane electromagnetic wave in an unbound medium

1.1 Plane Wave in a Simple, Source-Free (p, ], D, M = O) and Lossless Medium

Where p is the volume density of free net charge, J is the current surface density, p is
the polarization vector in dielectric (Coulombs- m~2%) and M is the volume Magnetization
density vector (Ampere- m~1) in magnetic medium.

Our starting point consists of the 4 differential Maxwell equations:

q.1.1 VxE.-28 ) 112 V.E--£

ot €0
113 VX B--ugey 2L 114 V-B-0
\__ - 70°0 5¢)

The two curl Maxwell’s equations indicate the fact that changing Magnetic Field with
time (1.1.1) produces Electric Fields and vice versa (1.1.3) and hence, necessarily
lead to propagation of electromagnetic waves.




111 VxE.-2
at

1.1.3 V X B— -Uoép aaf

Taking the curl of 1.1.1 and substituting it into the right side of 1.1.3 gives:

—_ 0 — 62
VXVXE——EVXB——_( Ho OE) =Ho¢o 37

Vector analysis teaches that Vx VX E =V(V-E)+V?E =V?E sinceV-E=p=0
one gets:

— 0%E
VE = Hoéo 52 [2]

Similarly, taking the curl of 1.1.3 and substituting Eq. 1.1.1 into it’s right side gives:

_ 0 — d 0B 0’B
VXVXB=—M0€()E(VX E)=_)Eq111=_'u0800t( at) Uo€o atz

Again, VXV xB=V(V-B)+V?B =V?B and, since V-B =0, one gets:
VB =g 52 [3]

We identify Equations 2 and 3 as differential wave equations for E and for B



Hence in Vacuum, Maxwell Equations teaches that each of the Cartesian (scalar) components of E and B obeys the
three-dimensional wave equation:

1 0*f
Vif="1"0_
V2 ot

Further more, Maxwell Equations imply that:
1. electromagnetic waves indeed propagate in vacuum and
2. these waves travels at the speed c:
co 1 _ 1
Jiogs  [1.2566-10°m-kg-C 2 718.8541878-10 2N (kg * -m™*-sec?)m *C?

m m km
=0.29979-10° — [ 3-10° — = 300,000 —
SecC Sec Sec
Maxwell’s speculation : “This velocity is so nearly that of light (measured by Fizeau (1849): 313,300
km/second, M.D.), that it seems we have strong reason to conclude that light itself (including radiant heat,

and other radiations if any) is an electromagnetic disturbance in the form of waves propagated through

the electromagnetic field according to electromagnetic laws.”
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History intermezzo:

In 1849, Fizeau calculated a value for the speed of light to a better precision than
the previous value determined by Ole Romer in 1676. He used a beam of light
reflected from a mirror 8 kilometers away. The beam passed through the gaps
between teeth of a rapidly rotating wheel. The speed of the wheel was increased
until the returning light passed through the next gap and could be seen.

Maxwell: “This velocity is so nearly that of light, that it seems we have strong reason
to conclude that light itself (including radiant heat, and other radiations if any) is an
electromagnetic disturbance in the form of waves propagated through the
electromagnetic field according to electromagnetic laws.”

Einstein on Maxwell’s work: “most profound and the most fruitful that physics
has experienced since the time of Newton”.

James Clerk Maxwell 1831-1879
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Partial differential equations, a reminder:

Many of the problems of mathematical physics involve the solution of partial differential equations. In
electromagnetics, these can be generally divided into two types of second order partial differential equations:

Laplace’s equation: Viu = 0, where the function u might describe the gravitational/electrical potential functions in
no-matter/charge region and steady state temperature in a non-heat source region as well.

Poisson’s equation: VZu = f(x,y,z), where u may present the same physical quantities listed for
Laplace’s equation, but in regions containing matter/electric charges, etc. The function f(x,y,z) is called ‘the
source density’, for instance in electricity it is related to p,, .

e . 10
Diffusion of heat flow equation: V?u = ?a_ltl

non-heat source region or the concentration of diffusing material. a is a constant which is defined as the
diffusivity.

, where U may present non-steady state temperature in a

1 9%u
Wave equation: |72u = v_z E’ where U may present the displacement from equilibrium of (a) vibrating
string/membrane, or (in acoustics) the vibrating medium (gas, liquid, solid), of (b) the electrical current or

potential along a transmission line and of (c) the components E and B of an electromagnetic wave.



We will analyze the case of the differential wave equation for E (Equation 2). First, let us write the full expression:
(Equation 2):

2 2 2 2 2 2

+—— 1
ox>  oy* o1’ ox>  oy* o1’
o>  0° 0 .
+[8x2 Ty azszZ(x’ y s
18

_?y(Ex(Xl y,Z,t))A('i_ Ey(x’ y’ Z’t)y—i_ EZ(X’ y,Z,t)i)

So the wave equation independently holds true for each of the components of the vector field E .
For convenience, we shall solve the scalar wave equation for Ey:

82 82 82 2
2 + 2 2
(8x oy® oz ot

+ )Ex(x, y,zZ,t) = Ciza—z E (X,Y,2,1)



o° 00 0 1 0°
+ + E (X, V,2,t)=——E, (X, V,2,t 4

One way, very much popular in physics, to solve said partial differential equations, is by the
method of SEPARATION OF VRIABLES.

The basic strategy is: looking for a solution in the form of products of functions, of which
each depends on only one of the coordinates. That is to say:

E(xyz) =Xx)Y(¥)Z(2)T(t) [5]

Introducing Eq. 5 into 4 yields:

X" ()YWZ@T () + XY WZ@T () + XY WZ"(2) T() = XY MZ(@DT(E)  [6]

cz
XII Y” ZII _ 1 T

Dividing Eq. 6 by X(x)Y (y)Z(2)T(t) yields: Tyt T =7 7]

Since Eq. [7] holds true for every point in space (each value of x, y and z) and for every time
point, each of the components of Eq. 7 must equal constant.
This is to say:

XII YII ZII 1 T
L= a? T=p?; 2 =—d? and  So= —k2 [8]
X Y Z c<T

Rewriting Eq. 7 one gets:



X//
— = —a? = X"+a%X = 0; andsimilarly Y"'+b%Y = 0 ; and Z"'+d*Z = 0; and

Ll s k2= T 4k2e2T = 0
X T

c2

We choose the constants to be negative: —k? and not positive +k? , since the latter results in a nonphysical solution:

—oo < x < 0o
X_" | +k?*=a? =k? a=k= X(x) x e, anon physical solution
X —k’= a? = —k?; a = +ik = X(x) x et** q physical solution

Therefore, the solutions of the ratio functions in [8] are to describe harmonic function, i.e. sines, cosines, and
their combination. We choose the following

X=glax ; Y=eiby,' Z=e'9% gnd T=etket, Consequently,
E(x, y, Z,) — X(X)Y(y)Z(Z)T(t)= Eoei(ax+by+dz—kct) - — Eoei[(axf+by37+dzﬁ)-(xf+y_‘)7+22)—kct] —

= Egei(k'F_kCt), where k » k = a,® + byy + d,2

or E(x,y,2,) canbe Eqcos(k - 7 — kct); Egsin(k - T — kct) or a combination of them, where (k - ¥ — kct) = wave phase

Since the multiplicity {kct} must result in an angle (in radians), i.e. kct=wt = k = % = % an

where T is defined as the cycle (period) time.
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The relation between E, B, and k in vacuum (1):

Taking E(x,y,z, )=Eoei(E'F‘wt), then perfoming the operations V X E= -Z—f of Eq. 1.1.1 we get:

VxE=Vx [Eoei(E'F‘wt)]= curl [(ona? + E, Y + Eozﬁ)ei(erx+kyry+kzrz—wf)] =

L Y = YL

ay 0z dz dx dx ay
= i[2(kyE, — k;Ey) + 9UexEx — ki) + 2(kyEy — kyEy)] = ik x E=-52 = iwB
kxE =wB [9]

From [9] we conclude that in electromagnetic waves in vacuum:

1. Bis perpendicular to both E and k
2 E= %B = %B =cB; i.e.Eequales ctimes B in vacuum.

2/27/2020 Electromagnetism
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The relation between E, B, and k in vacuum (2):

Taking B(x,y,z, )=B’oei(ﬁ'f‘“’t), then perfoming the operations V X B= - oo Z—f of Eg. 1.1.3 we similarly get:

— 0E 1 0E
VXB:—‘L[()SO at—_za —

=1
[l
Nle
a~>
Uol
lee
by |
[l
|
ey
i
=2

From [10] we conclude that in electromagnetic waves in vacuum:

1. E is perpendicular to both B and k
2 E= %B = %B =cB; i.e.E equales ctimes B.

3. Conclusion: the vectors E B and k are pendendicular to each other,i.e. forming a right hand system.

2/27/2020 Electromagnetism 19



The relation between E, B, and k in vacuum (3):

Except for the amplitudes, are the characteristic constants w, k, f the same for E and for B? Is there phase
difference between the wave fields?

Referring to wg and kg, as of the field wave B and to wg and kg as of the field wave of E one get (from9):
EE X E = EE X [Eoei(l_cE.r__wEt)] = a)Bgoei(l_cB'r__wBt-i-(S) [11],
where § is the phase difference between the waves.

Next, dividing the left side of Eq. 11 by its right side yields unity (1), and assuming that k is not perpendicular to E and
there is angle O5_j , one gets:

Sin?f’#ei[(kE‘kb)'f‘(“)E“‘)B)”‘g] =1, [12], for every time t,positionT ,§ and Og_.
BDO

This can occur only when: kz =k, = k; wp = wg = w,5=0and sinfy_, =1, i.e.Op_) = %and it turns out that:
SineE_k'kE'EO _ kEO _ 1E0

wBBO Cl)BO (o BO
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Biot=Savart law

dB:lLlO

4r 1 Axg, dt
1
¢

- —yxdE = ELB.

. E
INCaseV—>C = B=—
C

2/27/2020

I

2

| dl x¢ yogodqdllxr 1dqdt

¢? dt

dl »

Zix

dt

’
Are,r”

21



Can E or B have a component vibrating in the direction of k?

Suppose a plane front wave propagating towards %, i.e. E(x, y, z, )=E,eikx™x=®t)  Therefore, on this plane, where

= = . . . a 0 .
k,.r,=constant, E and B are independent of x and of y, hence the derivatives % and P equal 0. Next, since

=0 =0
8y 4 0B _ OB [

.= OE,
= = — = "=
divE 0 dx T ay 0z dx

ivB =0 =28, %8y 0B, 0By — i .
divB =0 =—=+ oy Tz = ox =>[Bx = constant in spac@. On the other hand:

E, = constant in space.] Similarly,

2 9 2
—_ d 0= 06 0 A ,\aE /\aE 5 A 5 A 5 A r
VxXE = |5 5 5= £ 0-95i+2-r= —(Bx% + B, + B,2) = Bx = 0 ={Bx(t) = Constant.]
Ex E, E,

The same treatment with V X B = CLZE yields: Ex =0 =(Ex(t) = Constant.)

Conclusion: E, and B, are space and time independent and hence, even not zero, cannot be a wave. That is to say the
electromagnetic waves are transverse, whereas the electric and the magnetic fields are perpendicular to each other and
both, vertical to the direction of propagation (k), while in phase and their real amplitudes are related by:

k 1
BO :;Eo == ;Eo.
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aPQ’M
av

= = —= dB = D « T T
—U——]°EQ,M—H’E+E°E+dlU(EXH) [e]

Replacing the minus signs in [e] and Integration over space V yields:

t

\ J1L* )M )
f | f

Generalization of Joule's Loss (negative sign) rate of Utilizing divergence theorem

o _ 0B _ 0D _
PQ,szV (]-EQ,M)dV:—J(H-—+E-E)dV—jdiv(ExH)dV [f]

law, representing the “stored” electrical and magnetic this expression equals:
rate of power dissipated (static fields) energy within the _ .
in the volume V. volume V. The terms in brackets (E X H )dS
are the magnetic and electric S )
energy densities, u,, and u, ,
respectively . Y

Conservation of energy dictates that this term
must present the flow rate of energy
inward/outward through the surface s enclosing
the volume V. Hence, the vector E X H is a
measure of the rate of energy flow per unit area
at any point on the surface s.
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The electromagnetic wave

E
‘B/"" o
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Remember:

B is c times smaller than E

Electromagnetism
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Wave characteristics (1):

A= the wavelength or the special period of the wave.

T= the cycle time or the temporal period of the wave.

y) . . .
=z, velocity (phase velocity) of wave propagation.
e = %{S@C_l} = %, the temporal frequency, i.e. how many periods occurs during a unit time.
c w= 2?71 {sec™1}, the angular temporal frequency, i.e. number of radians per period time - 27 f = Zn% = 2ncV = kc

« k== , the wavenumber, i.e. number of radians per unit distance. A is the wavelength. The larger A, the smaller k.

y)
e V= %{cm‘l} , the special frequency, i.e. number of waves per unite length (how many wavelengthsina 1 cm?)
A W
C = ; = /1f = k_

» (k-7 + wt){rad} = ¢, the wave phase

 Ey; By =wave amplitudes



Wave characteristics (2):

SR A=cT " b T=f1=2"1
N g —— S . T T — e ————
:’. 1 ! | :f A
o " X B " T/
P e o i s e e ST s e e e e 1 e
4 3 4 /\ \ ' / - 3 4 T \. :
== - = —+ - =

Figure 1: Wavelength A and time period T of a wave can be measured between any two
special or temporal points with the same phase, such as between crests (on top), or troughs
(on bottom), or corresponding zero crossing as shown.

pm {sec™'}; temporal frequency, i.e. how many times the wave reaches its maximum in a unite time (right figure).

- f

NN

s v {cm™1}; special frequency, i.e. how many times the wave reaches its maximum in a unite length (left figure).

* Longitudinal wave: the wave (medium) vibrates in the direction of its propagation.

* Transverse wave: the wave (medium) vibrates at right angles to the direction of its propagation.
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Biot=Savart law

dB:lLlO

4r 1 Axg, dt
1
¢

- —yxdE = ELB.

. E
INCaseV—>C = B=—
C
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Energy and momentum in electromagnetic wave

Refreshing expressions: For convenience, we shall examine what happened in RLC electrical circuit (see figure).

I I = VR + VC + VL
e YT
1 V=IR+ Q n Lﬂ Multiplying the equation cor.nponents by the
C dt current I one gets the equation for power (P) :
=1
P, Ploss Moving the expression I%R to the left
m side of the equality sign of [1] the
U IV = IZR + _Q Lﬂ [1] power rglated to the EMp, i.e. Py
- C dt + Pg, isisolated, namely:
EMp, =1V —I?R = IQ+LIdI 2
P - C ac

Lets assume that all components has the same cross section S, length [ and the same volume V, then:
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. 7 _ _ _pl 1 _oul __ Bl __¢p _ B'S _&S _ . .
Introducing: I = +S, | =0E, Q =045, R="=—, B—T=>IB——,L—TB—T, C==andd-S=Vinto:
10 IdI
IV-—I’R= —% + L— [2
i [2]

Rewriting [2] with the new ‘fields’ expressions:

JS)(ED) —|J - EV

oY

2
J-EeuV =—V=E-DV+B-AV 3]

~
~

alz

l
(]252) (— 32—V
oS g
Dividing [3] by the volume V, we get the ‘The
| A/sa E S volume power density’ (VPD) (i.e. the work done
—Q—IV— (o4 )Ed = ¢EE(Sd) = DEV —|E DV per unit time per unit volume) equation for
C d electric and magnetic fields and currents:
/ — - — = GZWEM
BS\ & Bl (- - Eppt ——=E-D+B-H=———=U [4]
— |15 (=) —|B-HV o - dtaV
I ot " u l
Input power — loss of power = U, the PD of E and M fields --- all per unit volume
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Next, Remembering that ] = 0E7q;, We may write:

2
J= 0EatBy+ E))-T /o~ =] BoxtBq+ Eu) =] Eox + - (B + Ey) =] Eux +] - Equ =

_ _ J2 =Eo m
= —/- EQ,M = J Eex — . [a]
loss input heat
Recalling J of Maxwell’s 4th equation:
_ _ oD _ _ 0D R _ _ _
VXH=]+ 5 = —]=-VXxXH +E [b] Introducing J of [b] into — ] - Eg y of [a] yields:
o _ _ _ 0dD
—J] Equ=—-E-VXH+E- 3 [c] Next, recalling from vector analysis that:
[26]: div(ExXH)=H-VXE—E-VxH [d] and substituting —E - V x H of [d] in [c], one gets:

—J] Equ=—-H-VXE+E- g—lt) + div(E x H); and since VX E = —Z—Ij (Maxwell — Farday law), the total loss of power per unit
volume due to E andB is:
aPQ‘M
av

30 Electromagnetism

S _ 9B = D . . = =
—U——]-EQ,M—H-E+E-E+dw(E><H) [e]

2/27/2020



_ _ 0B oD
PQ,M=jV (]-EQ,M)de—j<H E+E o )dV jdw(ExH)dV [f]
%4

. — OB B 0B 1 9(B)?> 1pugd(H)? 5 0D _ 1gy0(E)?
since H —=——= B) =—MO (H) and E - &
at Uo Ot 2ug Ot 2 at at 2 Jt

the equilibrium sign of [f] can be rewritten to yield the following equation [g]:

, the first expressions in the left side of

_ 9,
Po.m :J (]'EQ,M)dV=—aJ( wolHI? + —eOIEI2 dV fdw(ExH)dV [g]
%

. 1 5 1 = . . .
though the quantities u,,, = 5#0|H|2 and u, = E$0|E|2 are known to present electric and magnetic energy densities for

static fields (i.e. within a condenser or a coil). However, based on the fact that the integrands in Eq. [g] are defined at a
given point, these quantities fairly represents the stored energy densities in the case of time-varying fields, as well. That is
to say, that the correct amount of total electromagnetic energy density, u,,,, is always obtained by assigning an amount:

1 — — 1, - - _ _
Upn = Uy + Up =;(MO|H|2+ & |El?) =E(B-H+ D-E) [h]

; g _1p_ 1 =12 . E? .1 _ 2 o L
recalling that: H = #B = HCE , than uo|H|*of Eq.h = u, Gz =" [ﬂoc2 = gy] == gyE“ . Introducing into [h] yield:

1 2 512 2 2
uemzum+ue=§(eoE + &|E|?) = goE“ = uoH
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aPQ’M
av

= = —= dB = D « T T
—U——]°EQ,M—H’E+E°E+dlU(EXH) [e]

Replacing the minus signs in [e] and Integration over space V yields:

t

\ J1L* )M )
f | f

Generalization of Joule's Loss (negative sign) rate of Utilizing divergence theorem

o _ 0B _ 0D _
PQ,szV (]-EQ,M)dV:—J(H-—+E-E)dV—jdiv(ExH)dV [f]

law, representing the “stored” electrical and magnetic this expression equals:
rate of power dissipated (static fields) energy within the _ .
in the volume V. volume V. The terms in brackets (E X H )dS
are the magnetic and electric S )
energy densities, u,, and u, ,
respectively . Y

Conservation of energy dictates that this term
must present the flow rate of energy
inward/outward through the surface s enclosing
the volume V. Hence, the vector E X H is a
measure of the rate of energy flow per unit area
at any point on the surface s.
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The vectore E X H is the Poynting vector N. It is named after its discoverer John Henry Poynting who first derived it in
1884. It represents the directional energy flux (the energy transfer per unit area per unit time) of an electromagnetic
field, i.e. the power surface density of a traveling electromagnetic wave:

gsat - 9s  NE=ExH

recalling that: H = 1p = iE, then:
u puc

PDEM:

Vi 5o 07 1, 2 2
IN| = |E X H| =EE = &3CE “ = uocH
volt? o __Juole?/C?
— = C%New 'm?msec 1T

{N} = {gocE %} = C?’New 'm ?msec™?

1

John Henry Poynting (1852—-1914) . New?m? _ Newmsec™

_ -1.,,—2 -
= New™ "m~ “msec - = - - -

Joule sec™  Watt

The MKS unit of the Poynting vector is watt per square meter, {N}yxs= Wm™2,

Motti: Explain the idea of vector Poynting and relate to the case of static electromagnetics.
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Some magnitudes of electromagnetic waves (a):

. . w
* the electromagnetic energy per unit volume: a;m = U,,;, = £gE? = puoH?
9w _ 93w al al N
* N r r ityis —=———= — = = N = ) == E2= HZ
, the surface power density is 5195 — 319551 = Yem 5 = UemC CUem ;5 Uem=_= & Uo

Irradiation (intensity) I = (N); = (0E?); = goE{(cos? (kr — wt)), = %SOEg = I=(N), = %eOE(Z,

#, thelinear momentum per unit volume of electromagnetic waves:

dpyol ow dw du U, Uy
%:F:dpvolzlrdt:adt:T = dPunit vol :%:)202_201:?_? =
- u gE* ceggE? |ExH| u hf h h -
= — = = = —_) — = — = — = — =
= c c? c? c ¢ c/f 2



Some magnitudes of electromagnetic waves (b):

« [P, the radiation pressure per unit volume exerted upon any surface exposed to electromagnetic radiation:

the amount of energy loss AW of electromagnetic wave along dx of propagation is:

ow
_adx = —Fdx = Pdsdx = PdV [i],

where F is an "effevctive force" acting along the propagation path and ds is the beam (wave)cross section.
Consequently, from [i], the radiation pressure per unit volume [P equales:

ou . uole
P = ———dx = —0u = u;-u,, whereu = goE? in vacuum [{SOEZ} = ]m3 ]
5 o, _,volt? o 4 _,Juole?/C? , _,New?m® New m-New _Juole
{egE“} = C“New™'m = C“New™'m — 2 = New™'m o B S

Therefore, P, the radiation pressure per unit volume, is actually the consequential difference between the energy per
unit volume of orthogonally incident and transmitted waves. The more the illuminated media absorbs the incident wave, i.e.
u, — 0 and (0u = u,), the greater the pressure is. On the other hand, the more transparent the media, the lower the

pressure is.

Practically, the radiation pressure per unit volume is evaluated in a case of fully absorbed beam, i.e. u, = 0. Then,

P =y _u_cu_c _CEXH
1 c P c2

> P=

a |2
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Some magnitudes of electromagnetic waves (c):

In the case of fully reflection (say from a mirror, where u, = —u,), then P=2u= ZCJO

If the angle of incidence 8; # 0, the cosine components of the incidence, reflected and refracted waves (beams)
should be considered when calculating the relevant P(6;, 6,.).

Interestingly enough, the PD of the incoming Sun rays, as measured on Earth, is PD = 1.4 - 103Wm™2 = 1.4KWm™?,

hence: U = % =4.7-10"%Joule - m™3

Assuming that Earth is a perfect absorber, and taking into account the directional spread of the Sun rays, then
[P, the radiation pressure per unit volume exerted upon Earth surfaces is:

1 — —
P=-u=16-10 ® New - m™*
For comparison, the atmospheric pressure is:

1At = 10" New - m ™2



