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EMF In Media — Chapter 3

We restrict our discussion to LIH media, that is to say:

* Linear, i.e. linear dependencies: D = ¢F and H =

= |

* Isotropic, i.e. indifferent of the directions of k, E,D,B,and H, and

* Homogeneous, i.e. € and u, representative macroscopic characteristics of the media, are indifferent

to position (do not vary from point to point) within the media.

* Within regions in the media where there are NO free charges and/or free currents, i.e. ¢ = ] = 0, the
Maxwell Equations differ from the vacuum analogs only in replacement of pygo with pe, becoming:
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t
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Though the mathematical observation is pretty trivial, the physical implication is astonishing:

As the wave propagates through the media, the fields polarize and magnetize all the atoms/molecules
and the resulting oscillating dipoles generate their own electric fields.

These induced fields combine with the original fields in such a way as to create a single wave with
the same frequency but a different speed. This is responsible for the phenomenon of transparency.



Performing the procedures on equations 3.1.1 and 3.1.3 as done with equations 1.1.1 and
1.1.3 in Chapter 2, results in the wave equations in LIH media:
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Introducing the expressions into [4]: V2E = %% and V2B = %275 [5]

Introducing the solution E(x,y,z,) = E, el T=ket) jntq [5] gives: [(lk)z—n—z(ioo)z]E =0=
2
n 27Tf 27‘[ Ao
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Why?

In dielectrics and biological tissues ,- = 1 and hence n = /¢,



The relation between E and H in unbound, simple media

Recalling Maxwell’s 4t equation: V X B = e %, and introducing into them the full

expression of the fields: F— Eoei(k'f““t) and B = Eoei(k.f_wt) we get:
o _ xk

ik x B= pus(—iw)E /7 = k x k x H=—ewk X E [6]

Applying (from vector analysis): 4 x (B xC)=(A-C)B - (A-B)C onto [6], one gets:
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= H = 7 and similarly we can show that E = —nk X H [7]

Where n=+/U€ is a quantity that has units of impedance (ohms) and is defined as the intrinsic
impedance of the medium. Thus for uniform plane waves in a simple lossless medium:

the ratio of the electric and magnetic fields is 7 and is determined only by the material
properties of the medium, i.e., n, €.
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As for the units of n and its value in vacuum:

o o &0 c2e,” c& 3-108msec™18.85-10712C2New tm2
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Analogy to Ohm's law: [ = % ; From [7] ‘E = % = s — where
H is analogous to the current I, E to the voltage V and n to resistance R.

Summary: As ¢ and 7 in simple LIH media are indifferent to time and position,
namely they are constant, then:

The electric and magnetic vectors of plane wave fields are perpendicular to one another. In
lossless media E and H are in phase and both proportional to p(z — vpt), both propagate

in harmony along z , reaching their maxima and minima at the same points in space and at
the same times.

The orientation of E and H is such that E X H is in the direction of + z, which is
the direction of propagation of the wave.



Plane Wave in Lossy Media



Electromagnetic applications involve the interaction between electric and magnetic
fields and matter.

The important parameters in the macroscopic levels are &, u and o.

Most media exhbit nonzero conductivity, g, or complex permativuty, and hence
can absorb EM energy, resulting in attenuation of EM wave while propogating
thruogh the medium.

The loss of energy is frequency dependent and hence determines its application
range. For instance: airis quite transparent over the radio and microwave ranges,
yet it is highly lossy medium at optical frequencies.

The electric field of a propagating wave within a conductive media induces the conductive
currents J. = oE .

These curents are in phase with the wave elecric field, and cause dissapation
of some of the wave enery as heat within
the material in a rate power per unite volume given by E - J.



Uniform Plane Wave Propagation in a good Conductor

A. Reminder: we show that for a plane wave in a simple, source free, and lossless
medium (p = j = g = 0) that (4 Max. Eq.):
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VXH=c¢ = —Lw; where ¢ is a real quantity,i.e.e = ke ;4 = ;; B = p and

hence there is no phase difference between H ,E,E and D. However,

B. In source-free conductive media,p = 0, j. # 0,and o # 0. Then we have:
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The reciprocal of the medium impedance (%) would then be:
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In a good conductor (p =0, j. # 0,and g # 0): g,y = € + i% =/eR + g,

out of which the loss thangent of the medium is:
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And the relation between E and H in that case is:

a. H,B > E incontrastto H,B < E,as is in a lossless medium (Im).

b. Inlossy (conductor) medium the magnetic field lags the electric
field by a phase dif ference which,in a good conductor, may reach ~% :



EMF in good conductor (copper, Aluminum, Silver, Etc.): Approximation approach w2
— Dielectric component = —
0°E

We showed that In exhalent conductor, —>>1 Applying that condition into V2E = He 55

|

— (k)7 = [ueor(—iw)E =k >k = k2 = pe,rrw? = o (eR + l%) w? = uefw? + ipow [10]

The ratio between the two components in the right side of Eq. 10 in the case of %»1 is:
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0w = « 1 and hence the expression us“w-can be neglected in Eq. 10, yielding:
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k = |E|ei¢, where k = a + ib, but in a good conductor:
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In a good conductor, the expression for E of a wave propagating along the z axseis

and vibreates along the x axseis, would be:
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Thus [11] presents an attenuated wave, i.e. tﬁe\amplitude of the wave decreasing with increasing z.
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So, regarding good conductors, we may say thzg,t*re/phase velocity v, o, and the wavelength 4, in it are:

Up.con™ E‘/:w ’ juaw = \/E ) Ao =2{m/ucf
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Electric and magnetic fields in a plane EM wave in a conductor. The wave propagate
in the +z direction.



N: Poynting Vector in a good conductor



Energy per unit volume of electromagnetic wave in lossless and lossy (good conductor) media

. . Up .
In lossless media relation —= is:
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In good conducting media (gcm) we showed that H = (;Lw)E Ee's. Hence:
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What is the physical mechanism which explains the result: — > 1
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Dielectric dissipative media: general treatment (The relation between
E and H in unbuond, simple Lossy media)

Suppose we have a media with both conductance ¢ and imaginary permittivity € = R +ig! , Hence:
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Obviously, for this medium ¢ may differ from -



a=+%#
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Next, the influence of the dissipative media upon the traveling electromagnetic wave media, is realized through the impact
of its complex permittivity € on the wave # k (the dispersion ratio) as follows:
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Then, for wave propagating in Z direction (this time the wave # k is imaginary) :

E = EOei(Rz—wt) _ Eoei((a+ib)z—wt) _ Eﬂe—bze—i(az—wt) [8]

The right side expression is that of an attenuated wave, i.e. the amplitude of the wave decrease with increasing z.

Like Equation [8] it is trivial to show that the same procedure works for B as well:

B = Eoei(fcz—wt) _ |_z|EvOei((a+ib)z—wt) — @Eoe—bze—i(az—wt) [9]
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FIGURE 7.22.  Dielectric constant as a function of frequency. At low frequencies,
the permittivity differs from € by a constant multiplier. In the vicinity of the resonance, €”
goes through a pronounced peak, while €’ generally decreases to a new level.
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Loss tangent (tand, = o/we) versus frequency

Conducting
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Quasi-conducting
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LF, MF, HF, Microwaves Infrared Ultraviolet
VHEF, UHF

Relative permittivity and conductivity used in the

above Figure.

Medium (dimensionless) (S-m™1)
Copper 1 5.8 X 107
Seawater 81 4
Doped silicon 12 10°
Marble 8 10
Maple wood 2.1 3.3x107°
Dry soil 3.4 1074 to 1072
Fresh water 81 ~1072
Mica 6 10713
Flint glass 10 fg==

For typical good conductors,
both o and € are nearly
independent of frequencies
below the optical range.



TABLE 8.3. Dielectric properties of selected materials

Material f (GHz) € e T (°C)
Aluminum oxide (Al,03) 3.0 8.79 879 x 1073 25
Barium titanate (BaTiO3) 3.0 600 180 26
Bread 2.45 4.6 1.20

Bread dough 245 22.0 9.00

Butter (salted) 2.45 4.6 0.60 20
Cheddar cheese 2.45 16.0 8.7 20
Concrete (dry) 2.45 4.5 0.05 25
Concrete (wet) 2.45 14.5 1.73 25
Corn (8% moisture) 2.45 2.2 0.2 24
Corn oil 2.45 2.5 0.14 25
Distilled water 2.45 78 12.5 20
Dry sandy soil 3.0 2.55 1.58 X 107 25
Egg white 3.0 35.0 17.5 25
Frozen beef 245 4.4 0.528 -20
Honey (100% pure) 2.45 10.0 3.9 25
Ice (pure distilled) 3.0 3.2 2.88 X 1072 -12
Milk 3.0 51.0 30.1 20
Most plastics 245 2t 4.5 0.002 to 0.09 20
Papers 2.45 2103 0.1t003 20
Potato (78.9% moisture) 3.0 81.0 30.8 25
Polyethylene 3.0 2.26 7.01 X 107* 25
Polystyrene 3.0 2:55 8.42 X 1074 25
Polytetrafluoroethylene (Tefion) 3.0 2.1 3.15x10°% 22
Raw beef 2.45 52.4 17.3 25
Snow (fresh fallen) 3.0 1.20 348 X 107 -20
Snow (hard packed) 3.0 1.50 1.35 x 1073 -6
Some glasses (Pyrex) 245 ~4.0 0.004 to 0.02 20
Smoked bacon 3.0 2.50 0.125 25
Soybean oil 3.0 2.51 0.151 25
Steak 3.0 40.0 12.0 25
White onion (78.7% moisture) 2.45 53.8 13.5 22
White rice (16% moisture) 2.45 3.8 0.8 24
Wood 2.45 12t05 0.011t00.5 25
Waste r QY



Examples:

Microwave heating of milk: the dielectric properties of milk with 7.3% moisture content at
20°C and 3GHz are €. = 51 and tan 6. = 0.59. Calculate (a) €, and (b) the average
dissipated power per unit volume if the peak electric field inside the dielectric is 30kVm ™!

Solution:
(@) Fromtan . =0.59 =¢/'/¢; =€,'/51 = ¢’ =51:0.59 = 30.1
Recall that ulss = J. - E

e

current den5|ty]D = w
loss _] = WE E

oF - E = 0E%. However, when we'’is high an alternating
flows within the dielectric, yielding an instantaneous loss
= we''E?.

Pnl ml I

Consequently, the average power dissipated per unite volume for time harmonic electric
1
field E = Epeqy - cos(wt) would be (ulosS) = gwE”E;eak- Hence we have:

(b) we"EZoq =~ (2m X 3 X 10°rad/ sec)(30.1 x 8.85 X 10712F /m)(30kV /m)?=

0°W
= 2.26 X

= 2.26W /m3
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F = Eoe—bze—i(az—a)t) [8] B = %E‘Oe—bze—i(az—wt) [9]
311 VxE=-28 312 V-E=0
The attenuated plane waves [8, 9] satisfy the modified equations: ot

_ _ 313 U xB=pel+ucE 314 V-B=0
For any E, and B,.

Yet these Maxwell’s equations impose further constraints, which serve to determine the relative amplitudes, phase
and polarization of E and B . Obviously, V- E =V - B = 0, as shown previously, rule out any z components, i.e. the
fields are transverse.

For instance, lets choose E to be polarized (vibrate) along the x direction:

E(Z, t) = Eoe—bze—i(az—wt))fc\’ then applying 3.1.3 above yields: E(Z, t) = Eoe—bze—i(az—wt)j;

So once again, E L B. On the other hand, k, as any complex number can be expressed in terms of its modulus and
phase: 1
I

2\ ,
k = |k|e'®,where|k| = Ja? + b? = JueRw? <1 + (5_13) ) — conductor ~ = w+/peR (1 n (i) >

N[ =

EW

Summary: According to Equations [8, 9] the complex amplitudes £ , = Eoei‘sE and B , = Boei53 are no longer in
phase; and they are related by:



[k|e*®
w

B,ei?B = E,e'?E ; where @g— @ = ¢

The magnetic field lags behind the electric field. The (real) amplitudes of E and B are related by:

E, |k ’ 2
B_z=|a)_|= 57} 1+(%)

Hence, the (real) magnetic and electric fields are:

zZ .(Z
E(z,t) = E‘Oe_ﬁe‘(E_“’tJr‘pE)J?

.(Z
B(z,t) = Eoe_§e1(3_“’t+‘”’5+¢ )37



Since both a and b are proportional to 1/2 and ¢ is large, it appears that uniform plane waves not only are
attenuated heavily but also undergo a significant phase shift per unite length as they propagate in a good conductor.

On the other hand, since the phase velocity v), .., and the wavelength 4, are both proportional to o~ 1/2 they are
both significantly smaller than the corresponding values in free space, i.e. Vp, 4 and 4,4,

For instance, for copper (0 = 5.8-107Sm™1), at 300 MHz, we get:

Vpcopp= 7192msec™ [v,q.= ¢ = 3 - 108msec™] and A¢opp = 0.024mm [, = 1m ]

For 60 Hz instance, for copper, the values are more dramatic:
Vpcopp= 3.22msec™ [v,q.= ¢ = 3 108msec™] and A¢gpp = 53.6M [A,q,~5000km |
As an example of a nonmetallic conductor, for seawater (g, = 81,0 = 4Sm™1), at 10 kHz one gets:

v,sw= 1.58 - 10°msec™! and Agy = 15.8m [A,4,~30km ]



Dispersion:

The frequency dependence of the permittivity
(and refractive index)



Hecht

Maxwell’s Theory treats matter as continuous, represented
by the constants € and u with resulting n, unrealistically,
independent of the frequency of the EMF. To understand of
the dependency n(f),i.e.dispersion, the
atomic/molecular aspect of matter must be considered.

When a dielectric is subjected to an electric field the
atomic/molecular charge distribution within it is distorted,
inducing of electric dipole moments, which in turn modifies
the total internal electric field.

There are permanent polar molecules (Figure 3.34):

Thermal agitation keeps the dipoles randomly oriented,
yielding overall zero polarization.

Introduction of electric field cause dipoles alignment, i.e.
causing orientational polarization

FIGURE 3.34 Assorted molecules and their dipole moments.

And in many cases ionic/crystal polarization



Polarization due to EMF

When a dielectric experiences EMF, the charges of its atoms/molecules is subjected to time varying forces/torques,
proportional to the electric field E(t) of the wave. Due to molecule inertia (and bounds), the higher the f is, the
lesser the molecule response will be (aligning with E(t)) and consequently € will markedly decrease.

For instance, for water &, = 81 up to 101°Hz, after which it drops quite rapidly.

In contrast, due to their little inertia, electrons are relatively highly responsive to E(t) even at optical frequencies
(~10*Hz). This makes the permittivity and the refraction index frequency-dependent, i.e. :

e = &(w)andn - n(w) Electron
For the sake of simplicity, within the frame of a reasonable approximation and
small displacement x, we relate to the attracting electrical force acting between
the positive nucleus and the electrons within an atom/molecule, as being

spring-like i.e. picture an electron as attached to the end of an imaginary spring,
with force

— — 2
Frestoring = _kspring "X = TMWoX
constant Kgpping:

,k . I
Where wy = — s the bound electron natural or resonant oscillation frequency.

N'MTN 0'1DNY



Sowe have: (1) Frestoring = —Kspring - ¥ = —mwix and

In that simple model the damping force will be velocity (x) dependent, namely
(2) Famping = —myx (the actual cause for damping is radiation by the oscillating electron. We will learn this).

—_ — . _ . x_
The deriving EMF is the harmonic:  E(t) = Ege!(k¥=00) = E o' (2T~ ®0

However, since Agyr > atom size, i. e. Ax, the special wave component 271% can be neglected, leaving the EMF to be
just time dependent: E = E(t) = Ege(“Yand hence the driving force to be:

3) Fdriving = eE(t) = eEOeiwt
Where e is the electron charge and E, the is amplitude of the EM wave. Putting all this into Newton’s second law yields:
d?x
mE = Frestoring + Faamping + Farivings and idntroducing 1, 2,3 and dividing by the mass m we get:
- . 2 € iwt
X+ 2yx + wygx = —E,e [20]
m

Where m is the electron mass, and y is the damping coefficient (the coefficient 2 was chosen for convenience). To satisfy
Eqg. 20, x must be a function whose second derivative is similar to itself. Furthermore, it is anticipated that the electron will
follow the deriving force and hence have the same frequency. So we guess that:



X(t) = Ce“"t [21] and introducing [21] into [20] gives:

(—w? + 2y(iw) + w3)Ce'®t = %Eei‘“t out of which we get that:

C = eE/m

wi—w2+2iyw

multiplying both the numerator and denominator by the latter yields the complex number C:

- 2_,\2_o;
C=CcR+ic' = ei"a{gn_(:))g)ziwzzgzw) and hence [22]

B {(eEo/m)2 (wd — w? — 2iyw)(w§ — w? + Ziya))}; B eE,/m
- [

= |Cleti®
[(wE — w?)2+4y2w?]? | |

((1)% — (1)2)2 +4y2a)2]1/2

c! —2yw
Where: tClTl(p = CR =

2_,2
wH—w



Introducing |C|e*™% into [21], i.e. into x(£) = Ce'®* one gets [22]:

x(t) = |C”|eii<peia)t — |C“v'|ei(wti<,0) — eEo/Mme — pllwtte) [22]
|[(wE-—w?)2+4y2w?|
When wizg « 1, elastic scattering occurs, i.e. no ener. e EMF within the substance) happened.

Since w3 — w?>>yw, the damping element can be neglected. The closer w is to w, the larger x(t) is, and
absorption occurs.

Polarizability (a), Electrical Susceptibility (x.) and the refractive index (n) in LIH medium

The atomic electrical dipole moment p is the product of its positive charge times the distance (displacement) x between
the positive and negative charges. As said, when the dipole is subjected to varying EMF, both the displacement and the
dipole becomes time dependent:

e’E,/m,
2
The polarizability is defined as the induced polarization per electric field, that is to say:

p(t) e’ /me
E(t) [(w3— w?)2+4y2w?]1/2

i(wtte)

pt) =e-x(t) =

a



In a simple LIH medium, for the sake of simplicity, we assume that the dipoles follow the electric field and the
overall susceptibility y, of a unit volume containing N atoms would be N times the atomic polarizability:

g = VPO _ Ne?/m, _ PO
re TR T ] - w2 ay?w? 2T E(E)

Where P(t) is the macroscopic electrical polarization of the medium.

\ ) ) P(t) gE=D—-P=¢E-P=

t ingthat—— = & — —_— ] =
ext, remembering tha E(D) E— & — D = (8 _ SO)E

ttivit N P(t) Ne?/m, 5 £ ) Ne?

ermittivity € = € — <= € = n=g=—=1+ =

P YEZOTED ™ 0T (w2 — w?)2+4y2w?] 1/ T foMa[(WF — w2244y a?]1/?
Ne?
n= |1+

goMe[(WE — w2)24+4y2w2]1/2



d?x

m-—-= Frestoring + Faamping + Fariving and idntroducing 1, 2,3 we get:
d*x : 2 —iwt
mﬁ+myx+mw0x = qEe [20]

Dividing by m we get:
d’x q .
— 4 yk+ wix = —Ee ot
dt ¥ 0 m

x(t) = xpe H@t+a) [21]

To evaluate the amplitude x(, we introduce [21] into [20]:
xo(iw )2e H@OtH @) 1 )2 x e~ HOtHR) = %Ee‘i“’t /dividing by e ~{@t*+®) gne get: xy(w3 — w?) = %Eei“ =

quia

B m(w3 — w?)

X0



