EMF-Chapter 4

Reflection and Refraction
(Hecht 3 edition)



There are a few ways to treat reflection/refraction but EMF theory considered to be the far more complete description

Given are two homogeneous lossless dialectic media, having n;
and n; with a planar interface in between. We arbitrarily
choose the origin to coincide with that of the Cartesian
coordinate system.

We consider a planar monochromatic incident wave

having the form: E; = Eg;cos(k; - T — w;t)

travels within the plane A located

at zy. This plane is perpendicular to the interface plane

and parallel to the y — x plane and

hence, k; has no z component. The beam with k; hits

the interface plane at point o, at an incident angle 6; in
respect to i, unite vector normal to the interface at the z
point of incidence.

The reflected beam (k,.) is redirected at angle 6, back to the

medium n; in respect to @ and is not a priory assumed Figure 4.36: Plane waves incident on the boundary

to be within plane A (see Figure 4.36). between two homogeneous, isotropic, lossless
dielectric media (Heacht 3™ Edition, p110).



Thus making no assumptions about the directions, frequencies, wavelengths, phases or amplitudes, the reflected and
transmitted (refracted) waves can be expressed as:

E,. =Eycos(k,-T—w,t+¢,) and E,;=Egcos(k,; T — wit+ @,

Where ¢, and @, are phase constants relative to E; due to the fact that the origin is not unique. Had the origin
been placed in the incident point, then ¢, = @; = 0.

Next, boundary condition in EMF dictates that the tangential components of the electric fields across the two sides of
the interface must be continuous. These tangential components, regardless the direction of E can be determined from
the cross-product with i, that is to say:

OXE;+UXE. =1UXE, Or
i X Eg;cos(k; -7 — w;t) + 0 X Eg,.cos(k, - T — w,t) =1 X Egscos(k; - 7 — w,t)

This equality must exist independent of t and r and hence the EMF E;, E,., and E; must have precisely the
same functional dependence on the variables t and r, which means that:

(-7 = i) _, = (e T =t +9,)| _, = (ke TF—ant+ 00| _,



Since this equality holds for any t and r, their coefficients must be equal, i.e.:
W; = W, = W

Which is in agreement with the fact that the electrons within the medium undergoing forced
vibrations at the frequency of the incident (driving) wave. Similarly:

|(El . ‘7') |y=b = |(Er T + (pr) |y=b = |(kt T+ (pt)| _p where 7 remains on the interface

From the left two terms we obtain:  [(k; — k;.) - ﬂy:b = @y

We previously proved that the scalar product k - ¥ = constant describes a plane to which k is perpendicular and is
sweeps out by the end point of 7. Hence, the vector (k; — k,.)
1. is perpendicular to the interface plane.

2. is paralleltou.
3. k; = k, since the waves, having the vectors k; and k,., are in the same medium,

4. has no component in the interface plane, i.e. parallel tou = Ei, k, and i are in the plane A and hence:
5 ux (Ei - E,,) =0 = k;sinf; = k,sinf, =

Law of reflection: Bi — Hr



Next, from the left and last terms of: |(k; - T — “’it)ly:b = |(ky - T — 0, t + ‘pr)|y=b = (k- T — it + ‘Pt)|y=b one gets:

(k; — k;) L to the interface plane and hence
k;, k,, k, and i are coplanar, i.e. within the plane A and hence

U x (Ei — Et) =0 = k;sinf; = k;sinf, [24]

Introducing k; = 2= %into [24] yields Snell's law:

Uj c Tl]

n;sin@; = n,sinf,



Fresnel equations



Fresnel Equations:

For any polarization of the incident, reflected and transmitted
(refracted) waves, their electric field can be separated into the
components which vibrate normal (s) and parallel (p) (within) to the
plane of incidence.

The relevant E and B fields and k; are depicted in the upper panel of
Figure 4.37. In the following, the ratios between the amplitudes will be
analyzed, subject to the boundary conditions discussed above.

Case 1: E is normal (s component) to (and B within) the plane
of incidence:

Recall that: E = vB and that E L B 1L k, than:

~ _ _ NE E,
k X E v B B k; ‘_A Z B
Interfa ‘ 0i (,)/’-" " '

7 - - - X

Due to the continuity of the tangential components of the E-field, we have 4 \\\ i

everywhere at the boundary at any time point (we arbitrarily choose that AN E,

E;, E,, and E; are all directed towards the reader at the interface) and Bv&
Plan of incidence K,

remembering that at the interface all cosines are equal to one):

FIGURE 4.37 An incoming wave whose E-field is normal to the

(s components) Ey; + Eg = Eo  [25] planeofincidence.  (Hecht)



Recalling the boundary conditions for the tangential (p) components of H, B: )

. Bty _ Bt
F =0, AH; =0 = =
or lf ’ T H1 U2
—H;cos0; + H,.cosB, = —H;cosf; (+,— areinrespectto the increasing x)

B 1E 1 E nE
In biological and dielectric media: - — and recallingthat: H =—=—-——= - =
g Ui = U = U g L nv mem e

and introducing H = :—EC in [26] and realizing that: 8; = 6, and n; = n,. one gets for the s components of E:
0

n;(Ey; — Egy)cos0; = nyEqcos0; [26]

and togaether with [25],i.e. Ey; + Eo, = Eo;, one constraucts the following Fresnel amplitude ratios:

4 <E0r> _ n;cos; — nycosb, )
S

r.=r = and
s 04 Ey; n;cosO; + n,coso,

; o= Eo; 2n;cos0;
ST \Ey; , Micosf; +n,cosh,
Where, r, and t, denotes the s amplitude reflection and transmission (refraction) coefficients respectively.




Case 2: E is parallel (p component) to (and B normal) the plane of incidence:

Again, due to the continuity of the tangential components of the E-field, we have
(see Figure 4.38):

(p) EyicosB; — Ey,.cos0, = Ey.cos0, [27]
(p; 0; = 0,) (Eo; — Eor)cos0, = Eycos0, 28]

From the continuaity of H,: Hi ~+ Hr = Ht [29]

: , , B 1E 1 E nkE
Again,recalling the relation: H =—=—— = — =
po uv puc/n e

and substituting into [29] one gets :

n;(Eo; + Eor) = neEyy [30]

Inlerface

E E
2T and =2 and
Ei Ei L

rearrange both equations, one gets:

Dividing [28] and [30] by Ey; , extracting

FIGURE 4.38 An incoming wave whose Efield is in the plane-of-
incidence,



E n;cosf;—nm;coso E 2n;cos0;
ﬂ) — t L L A and tp — t" — (ﬂ) — l l

== _
p | Eo; . n;cos0;+nycos0; Ep; p n;cosOi+nycosO;

Where, 7 and t; denotes the p amplitude reflection and transmission (refraction) coefficients respectively.

The Fresnel coefficients:

o = Eor\ mn;cosf; —n,cosO, - ﬂ B 2n;cos0;

y i Eo; . n;cosO; + n,cosf; ° a Eo; . n;cos0; + n,cosl,
- Ey.\ n.cos6; —n;coso, , - Eor\ 2n;cos0;

¢ = Eo; , n;cos0; + n;cos0; P = Eo; , n;cos0; + n;coso;



Some practical aspects of Fresnel equations:

Using Snell's law the above 4 refractive index-based equations can be re-expressed by @; and 8,:

sin(0;—0;)
sin(0;+0;)

=— Tl]ei—m.
Bi—>0

2. The equality [ 7y]9,~0 = —[ 7L]g,—0 is a result of unspecified plane of incident in such a scenario.
nscosf;—m;cos0O,

1. For 8; - 0 (normal incidence) the tangents in [b] — sinesi.e. [ 7]g,0 =

3. Expanding the sines of [1] and employing Snell’s law, yields: [ 1ylg,o0 = —[ 71 19,0 = S
t i i t

ngcosf;—n; ng—n;

cos0;
becomes
ngcos@;+n;cos0; ng+n;

4. since@; > 0 = 0, — 0as well,then [1y]lg,.0 = —[71]g,50 =

For instance: at air (n;=1)-glass (n;=1.5) interface [1]g,0 = —[ 71 ]g,~0 = £0.2.



Snell’s law teaches that forn; > n;, 6,< 6;andr (ry) < 0 for all 6; (see Figure 4.39).

Brewster’s (polarization) angle: -
T 2 [ _ :
At (0; +60;) = 5 tan(0; + 6,) = o and L+n| no M=o ]
= ’.L =
0.5 s
. tan(0;—0;) : i Y
Equation [b]: = + ‘ > 0 (see Fig. 4.39 8 L ———
for which 6;= 6 = 6, (p-polarization). $ r <, d
© 0
At the Brewster angle 6p, the reflected wave is E
totally s — polarized, a fact which makes
this a way to polarize light by reflection. o
A(O;+0)=2-0,=2-60; =
- 1.0
. . T 0 30 60_ 90
n;sinfg = n;sin (E — 93) = n;cosfy = 0, (degrees)
nt FIGURE ?.39 Th}a amplitude coefficients of reflection and transmis-
_ _ sion as a function of incident angle. These correspond to external
— taneB - - ntl reflection n, > n; at an air-glass interface (n,; = 1.5). e

n;



Reflectance and Transmittance

Recalling that (a) the power density (i.e. per unite surface of a beam cross-section) is given by the Poynting vector N
= c?gyE X B and that (b) its intensity I - radiation flux density (i.e. average energy per unite time crossing a unite area

normal to N, (Wm™2)) is

I =(N)y =="E}

Regarding Figure 8.18: let I;, ., and I; be the incident , reflected and

the transmitted flux densities accordingly (beam intensity). As

shown in the figure, the cross sections are Acos0;, Acos0,., Acos0,

and hence the power (the energy per unit time) of the incident,

reflected and transmitted beams are [;Acos0;,1,,Acos0,., [[Acos0O,;

The reflectance R is defined as the ratio between the reflected and incident

Powers (transported energy per unit time):

V€
I Acosf, I. —S-Eg,
R = T _-_2
[;AcosO; I _vizgi EZ,
—_ E(Z)r 2

= 9r — ¢
2
Ey;

=— same medium =

2
’ v
\: e A /’ ”

Medium 1 (g1, 1) A\

Figure 8-18: Reflection and transmission of an incident
circular beam illuminating a spot of size A on the inter-
face.



