Dividing by g to yield £"

Similarly, trasmittance (T) is defined as:

Vté&t
£
T = trasmitted power [ Acos@; 20 Eg, coth V& "E2, cosHt 40]
~ icident power _Il-Acosei_ Vi&; "cosO; viel-rEOi " cos0;
€0¥ 2
>~ Ej
Next,recalling that n* = g, = &, and thatv; = ; and introducing it into [40] gives:
]
v.el E5, cos@, nt niEg, €050, _ nE§, cos8, n.cos0,E5 n.cosb,
= TE2. cosB; C . 2pz. cos®;, mE2, cosB; n.cosO; E2.  n;cos6;
Vi€ By i —niEy, i MLy i i Y i i
i
So in summary we have: 1
—cos0
R = 2 n.cosl; , v, L,
=T and T — t — 1 t
n;cos0;
g : — C€0S0;

Vi



As can be seen, T, unlike R = 1%, is not simply equal to t*>. There are two reasons for that:

Cc

VE €
1. Recalling that in a medium I = (NT)t = ? EZ = n? EZ, the higher the velocity the more energy is transported.

On the other hand, the denser (optically) the medium, the slower the speed of energy transported through it. That s
to say, the intensity is velocity dependent, i.e. I a v , a fact which justifies the dependence of T on indexes of

refraction.

2. The cross section area of the incident and reflected beams are the same, but different from that of the transmitted
beam, a fact which is manifested by the cosines ratio.

Conservation of energy
Energy|; = Energy| , + Energy|; = PD ;- A; = PD ,. - A,.+PD ;- A; =

Vi&i 2 _ Vr=iér=i p2 Vtét 2
. Ejicos0; = TEO,,COSH,:,- + TEOtCOSOt [41]

Dividing [41] by its first left term yields:

2 2 2 2 2 2 2
Eor | ve 1Hogr cosO.Ey  Eg. v (1/v:%) cos@.Eg  Eg,. nicos6Eg, .
E%Z ' v; uog; cosO;EE  E3 v (1/v;?) cos@;E3 E3  mncosO; E2,

n.cos0;

1=

-»1=r%+ t> = R+ T where there is no absorption

n;cos0;



Recalling thatfor 8;, =0 = 0,= 0

__ ngcosB;—n;cosO,

ng—nm;
1. [rll]ei=0 — _[ rJ_]ei=0 - —

= and similarly
01,:0 nt+ni

ngcos@;+n;cosb;

y el =] B 2n;c0s0; _2my
: 11e;=0 118;=0 n;cos0; + n;cosh; P L +n,;
Then:
) 2
Nng—n; 21,
R=r2=R =R, = L and r=T,=T,= :
" nt+ni ” Tlt+ni

Hence, for external reflection, 4% of the light traveling in air and normally hitting a glass plane will be reflected
back to air.
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Ulaby &Hecht: Angular plots for Ry, Ty (left) and R, T, (right) as a function of 0; for an air-glass interface.

Note: (a) Forany @;thesums R, + Tyand R, + T, are each equals unity (1) and (b) at the Brewster
angle g, Ry = 0 and T=1.



Table 8-2: Expressions for I', , R, and T for wave mcndence from a medium with intrinsic impedance 1 onto a medium with
intrinsic impedance 7. Angles 6; and 6; are the angles of incidence and transmission, respectively.

Normal Incidence Perpendicular Parallel
Property 0, =60=0 Polarization Polarization
Reflection = N2 — N1 r o= N2 cos by — ny cos G 'F" _ Macos O — ny cos b
coelBictent n2 + N1 N2 cos B + ny cos O N2 €os 6 + 11 cos b;
2 213 cos 6 213 cos 6;
Transmission = =7 T = (s 7| = (b
e — n2 + n N2 cos 6; + n; cos 6, n2 cos 6y + 1y cos 6;
0s 6
Relation of 'tor | 7 =1+T 1 =1+4TI} r,,_(1+r,,)° —
t
Reflectivity = |["[? R, =|Iy)? Ry = |y|?
cos 6 cos 0
Transmissivity | 7 = |t|2 ﬁ) Tioesjppjtioet Ty = |gy |2 ="
n2 12 cos 6; N2 cos 0
Relationof Rto7T | T =1—-R T)=1-R, Ty =1-Ry

Notes: (1) sinfy =

Vitier/nagr sinby; (2) gy =

media, n2/n; = ny/ns.

Vi /er: (3) na = /ua/ea; (4) for nonmagnetic




Total Internal Reflection
Tli> Tlt



External reflection (fast medium): n;,<n; and 6, <6; ;

Internal reflection (slow medium): n; >n, and 6; > 6;,
and 75 is positive for every 6;

As for internal reflection, thereisa 6;= 6, (critical angle) where both

rgand r, tends to unity (+1, see Figure 4.41), i.e. the amplitudes of the

internal incident and of the internal reflected waves are equal. In other words, the
propagating internal wave is fully reflected internally and EMF doesn’t leaves the
incident medium --- a phenomena known as total internal reflection.

T
0. is aspecial value of 0; for which 0, = —.

2
Applying thg into Snell’ law, where n; > n;, gives:
. ng
sing,=—=ny <1 and 6 > 0
n;

Amplitude coefficients
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FIGURE 4.41 The omplitude coefficients of reflection as a function
of incident angle. These correspond to internal reflection n, < n; ot an
air-glass interface (n, = 1/1.5).

Summary: as 0; becomes larger, the transmitted ray gradually approaches tangency with the interface plane (boundary)

and consequently more energy appears in the reflected beam.

The larger n;, the smaller n;; and 0. are. Forall 8; = 6., all the incoming energy is reflected back into the ‘incident

medium’, a process called total internal reflection.






The Total internal reflection can be nicely demonstrated
via Huygens—Fresnel principle which says that every
point on a wavefront is itself the source of b s L
spherical wavelets (Fig. 4.55).

(a)

In more general terms, when the evanescent wave
extends with appreciable amplitude across

the rare medium into nearby regions occupied by
a higher index material, energy may flow through
the gape in what is known as frustrated total
internal reflection (FTIR).

(C) ny>n;and & =6,

“igure 8-10: Snell’s laws state that & = &, and siné, =
(ny/n2)sinth. Refracuon is {a) inward if n) < #; and (b)
outward if n; > nz: and (¢) the refraction angle is 9°
if ny > ny and &; is equal 10 or greater than the critical
angle . = sin~'(ny/m)).

Figure 4.55, Left (Hecht):

0;and n; are kept constant in
the sub — figures(a), (b),

and (c).

However, from (a) to (c),

n; decreases thereby increasing

(29

The reflected beam is not shown

The evanescent wave, having crossed the gape, is
still strong enough to drive electrons in the
“frustrating” medium. The driven electrons will, in
turn, generate a wave that completely alters the
original field configuration, permitting energy flow.




A glance into the mathematical aspect of Evanescent Wave

The wave function of the transmitted EMF is: E, = Eo, expi(k, - 7 — wt) = Egp exp i(keyty + keyry — wt) =

= Ey; exp i(ktsinetrx + kicosOir, — a)t) [1]

As we are aware that the waves component that travels along the y direction at the rare (fast) medium
(n;) is attenuated, we are interested in the content of cos@; of [1]. These can be derived from Snell’s equation as follows:

2 1/2 o N1/2
, , n; . sin“0;
nsin6; = nsin, = n,(1 - cos?6,) /2 = cosé; = (1 ) (n_> o Qt> ) (1 T )
t ti
.. sin?0; 1/2 . : : sin?6; .
Replacing in [1] cos8, by (1 — ) , and recalling that we are interested in the case where — >1, the expression
ti ti

1
1/2 sin?0;

k.cos@, =k, (1 - Sinzft)

Ngj

becomes complex, i.e. == *ik; ( — 1)2 = +if5. Introducing the last expression

.2
Ngj

with the pre-exponent negative sign (the positive is not physical) into [1] and following Snell’s,i. e. sinf; = %, a wave
ti

function with an attenuated y-component is born:



. sin9; )
Et — EOt e—ﬁryel(ktsmetrx—wt) — EOt e_'BrJ’el(kth g wt

This wave propagates in the x direction as a surface/evanescent wave. Its amplitude decays rapidly in the y-direction into
the rare medium, becoming negligible at a distance into the rare medium of only a few wavelengths gap.

Interestingly enough, the phase difference between the incident and reflected waves (at the interface) can be
shown to differ from m and hence cannot cancel each other. Consequently, by the continuity of the tangential
component of E, there must exist an oscillatory field in the fast medium which vibrates at frequency w in
parallel to the interface, within the plane of incidence.

Regarding energy conversation at the gap environment (proximity), a more extensive treatment would
have shown that energy is actually circulating back and forth across the interface, resulting on the
average in a zero net flow through the boundary into the less dense medium. However, the energy
associated with the evanescent wave that propagates along the boundary in the plane of incidence, is
attributed to the fact that in reality, the incident beam would have a finite cross section and hence
obviously differ from a true plane wave (where the plane is considered an infinite unbound plane). This
deviation gives rise (via diffraction) to a slight transmission of energy across the interface, which is
manifested in the evanescent wave. (Hecht p. 125)



Reflection from a metal (excellent conductor)

Conductor (metal) has free electrons, i.e. being able to circulate within the conductor.

Their motion constitutes currents.

The deriving electric field E, the resulting current density J, and the conductivity are related by: J = oF.
Dielectric has no free or conducting charges, i.e. ¢ = 0, while for metals 0 # 0. However

For idealized “perfect” conductor o — oo and free electrons adequately follow the driven field alterations,

In perfect conductor no (a) restoring force, (b) natural frequencies and (c ) absorption exist, just re-emission.

L A o o A e

In real metals the conduction electrons undergo collisions with the thermally agitated lattice and/or

imperfections through which EM energy is irreversibly converted into Joule heat.



We previously show that for a good conductor %»1 in the visible range, and hence k and n becomes complex:

- i i

F=ymow-iV? = Jiow-(e2) = Jigw et = |k|=ymo=2=2="2 =

C 1o
Neon = ZVHO-(U = C ’

So the larger o the larger n.,,, which decreases as f increases. Next, going back to the reflectance of a beam which
propagates through air (n;=1) and perpendicularly hit a good conductor surface, i.e. n; = n,.,,, = 1 = np + in; we

have: ,
(N — 1 . feont — 1\ (Mcone — 1 . (ng —1)? +n;°
R = - Rcon — | = ~ o 2 2
ny + 1 flecont + 1) \Fcone +1 (ng +1)? +ny
nr—1
nr+1

2
Wheno — 0,n; = 0 and Ry, = Rgiq. = ( ) for n;=1 (air-dielectric interface). In this case ng=n,

However, for g — oo,n; > np and R.,,, — 1.



Phase and Group velocities

Phase velocity of a wave is the rate at which its phase (the argument of the periodic function, ¢ = kx — wt)
Is changed with time, for a single frequency. In other words, it is the velocity at which the phase of any one

frequency component of the wave travels. The phase velocity is given in terms of the wavelength A and

i _A e — ey — 99 _ _9¢ _ i _dx_o
period T as v, =--— From ¢ = kx — wt = P k and > = W, out of which v = =
Group velocity, i—c;: , is the rate at which the amplitude of the wave package envelope (usually resulted from the

wave modulation) changes in time. In general w is a function of k.

Example: By combining two sines with slightly different frequencies and wavelengths (wave #s), one gets:

cos[(k — Ak)x — (w — Aw)t] + cos|[(k + Ak)x — (w + Aw)t] = 2cos(Akx — Awt) - cos(kx — wt)

o Aw dw o w

So that the envelope (group) velocity is v, = % a and the phase velocity is v, = P
. C ck ck(n) dw c ck dn
RecallingthatNn = — = — = W = — Bl e ey
Vp w n dk n n< dk

c dn . .
where — =1 and equals v, only f or—- = 0, a circumstance where the phase and group velocities are equal.

| 4



https://en.wikipedia.org/wiki/Phase_velocity
https://en.wikipedia.org/wiki/Phase_velocity

The three macroscopic properties: €, u and o which characterize medium are actually, in different extents, frequency
(of the perturbation EMF) dependent.

Obviously, the frequency dependence of the permittivity makes n, the refractive index, and v, the wave propagation
velocity, frequency dependent as well, a phenomenon called dispersion.

Next, because waves of different frequency travels at different speeds in a dispersive medium, a wave form that

incorporates a range of frequencies will change shape (being modulated) as it propagates. For instance, a sharply defined
sinusoidal wave will typically flattens out, whereas each sinusoidal component travels at the ordinary wave (or phase)

. . d
velocity: v, = %, the packet as a whole (the “envelope”) travels at the so-called group velocity: v, = d—;‘:

The energy carried by a wave packet
in a dispersive medium ordinarily PR oy S S

travels at the group velocity, not the e /\ v /\ A\ 224
phase velocity. - ’7\ p \/\‘

- wmuy G

Figure O 2() (Griffiths, p399)



