Chapter 5:

Metallic waveguides and cavities



Until now we have discussed wave solution of Maxwell’s equations with plane wave fronts (i.e. having the same
phase), unlimited in extent (unbound).

This resulted in a transverse EM (TEM) wave having an infinite unbound wave front.

On the other hand, we are interested in transmission, along a chosen direction, of EM power which can be realized
lengthwise through a hollow line in a conductor (see Figure 1).

When this happens, the propagating wave is confined to the interior of the hollow space.

From Figure 1:

What are the wave types which can propagate along z direction in the hollow space?
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1. Plane wavefront TEM (which we learn until now). As propagated along the z direction, then E,= 0, B,= 0 and
the field components at the x-y plane (for instance the plane defined by the dashed circle) must be indifferent of

: d d
x and/or vy, in other words o and 3y must equal zero.

Therefore , under the continuity boundary conditions, i.e. E; = 0, and being the wavefront planar, then the value of the
fields E, and/or E,, within this plane, must equal that of the circumference (dashed line), i.e. = 0.
So we end with a confined plane wave whose £, =, = E, = 0 and hence we conclude that:
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2. Can TEM wave which propagates along z direction (E, = 0, B,= 0) and has no plane wavefront, exist? i.e.

] ]
Ix and 5 #* 0
FromTEM = E,=0,B,= 0= %= aaiz = 0 and hence according to Maxwell's equations I1I1 and 1V:

The z components of curl E and curl B are zero as well.
Thus, the electric field component within the x — y plane, Ey,,, must be a conservative vector (electric) field, hence

e = ov = ov L . =
Satlsfymg: Ey=—- and E,, = ~ 3 Furthermore, since in the present case divE =0 = p

2
(dlvgrad) — + ﬂ =0

Going back to Flgure 1 and specifically to the inner circumference marked by dashed line, the boundary conditions
dictates: —Z—‘L/ = E; = E; = 0 and hence:
V = constant all over the conducting inner surface of the hollow

Hence these two characteristics of V: del,zcjy = 0andV; = constant defines V as an elecrostatic potential.

Hence, the electric field within the hollow in every x — y plane must be similar to that which exists in charged
conductor whose surface corresponds to that of the hollow space. Next,
Since within a conductor E = 0, even when charged, (unless there is an inner hollow —



a. Can tem (E, = 0) wave with planar wave front exist within a hollow conductor?
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* No TEM type of planar wave front exists in hollow conductor.

* Since E, = E), = 0 and given that E, =0 = CurlE =0 = _B =B = constant, zero
= No EM wave with planar wave front can propagate along z within the hollow

conductor.
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So in summary, it is concluded that the
propagation of EMF wave of TEM type along a
hollow space within a conductor is impossible.



Propagation of EM wave oblique to the axis of the
hollow space in conductor.

Kparticular # Z = multiple reflection of (the particular wave)

from the interior metallic walls, which

interfere with each other to form standing wave within the x —y (S — Fig. 2) plane, L Z, the hollow’s cross
section.

Hence, though the particular wave is oblique to 2, and its carried fields are E L B L kygrticuiar there will
be always a field component in the direction of 2, i.e parallel to the hollow’s axis.

Two principal EM waves exist when propagating obligue to the axis of the hollow space in conductor:

Transverse Electric (TE, B — Wave) and transverse Magnetic (TM, E — Wave).



Propagation of EM wave oblique - an illustration
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TM: E — wave:
B, =0,E, # 0 = a longitudinal wave of E,,.

TE: B — wave:
E, =0,B, # 0 = a longitudinal wave ot B,,.

Both TM and TE waves have no planar wavefront

Another solution can be a combination of TM and TE waves. However, their propagation along the
hollow’s axis is not TEM and has no planar wavefront

Modes and frequency range of the standing waves in x — y plane, L to Z, are dependent on the hollow’s
cross-section dimensions and the frequency of the carrier wave. Since along the z direction there are no
restrictions, the EM disturbance spreads along it as a free wave, having a typical wave # k4.



General: The mathematical expression of the two longitudinal wave components are:

For TM (B, = 0): E,2¢'(Ke2=9t); andfor TE(E, = 0): B,,e'(kez=®t) 2 [1]

Note:

« E,, and B, are not constant as they were on plane wavefront, but vary across the x-y plane and thus are
y and x dependent.

* This dependency will be found via Maxwell’s equation under the mechanical restriction of the guide, the fact
that 0 — oo and the boundary continuity AE:qpgent = 0.

* The rectangular hollow space dictates the use of Cartesian coordinates and hence from [1] the following
conversions are yielded:

0 : 0 :
— - ik and — - —iw 2
0z 9 ot 12
X y z Xy z
2 a8 0 o 4 . d : :
* Asaresult: Curl = |~ ay 92| 2 lax 3y tkg| andsince w = ko, 3t - lw = ikyC
E, E, E, E, E, E,




Extraction of E

Multiplying Eq. I by kg, and Eq. Il by —kyc even the
coefficients of By, in the two equations. Adding them
and rearranging the equation gives:

Equations a-d represent a spectrum of E, = [a]

9E,
o [k + cko 22

solutions for the fields components in the
Extraction of B :

x-y planes (hollow space cross sections), out

Similarly, multiplying Eq. 11 by iky and Eq. 111 by —ick,
equals the coefficients of B, in the two equations. Adding

of which the expression for E- and B-waves . o
the them and rearranging the equation gives:

in the hollow space is determined as follows.

y (ko ) c ax g dy

[b]

Similar treatment of Eqs. I and IV gives:

9E,

Y T ik )[kg cko aBZ] [d]



TM (E-wave)

Here we just need to substitute B, = 0 in equations a-d. This left us with the following expressions:

F = ] I aEZ . E o= [ I aEZ le]
TGk T ax T (g —kg) T oy ‘
1k 0E Kk 0E
Bx — _ lz O/C2 VA ; By — lz O/C2 Z [f]
(k0 — kg) dy (k0 — kg) ox

Next, from[e] we get:

OE,
E, B B,

Ex ox ; ] ] _ _
E, ~ 9E, — extractibng these derivations from[f]=>}5—x/: E, = —EyB—x = [g]
dy

_ B, . R
= (E* B)x—y piane = | ~Ey ==X +E, 9 |- (BxX +B,y) =0

yBx

Conclusion: within the cross section of the hollow space (x — y plane): E L B 1 kg and E, B are in phase.

Similar treatment yields similar results for B-wave, i.e. TE (E,= 0) wave.



And what about the longitudinal component E,(r, t) of a TM wave? All that can be said is that it obeys
the differential wave equation:

2 2 2 2 _
aa E;Z + 66 E;Z + aa E;Z — izaa EZZ h] Next, Introducing E, = EO,Zel("gz_“’t) into [h] yields:
X y A c? ot
0°E, O0%E, ) w? 5 2 _
2 T 5y kg ——7 | Ez = (kg” —ko“)E,  [i]

Separation of variables is employed to solve (the amplitude) E ,, i.e. by introducing E, , = X(x)Y (y) into [i]:

X _0%Y 5 5 _
Yﬁﬁ-xa—},z:(kg _kO )XY []]
o : X v
and dividing [j] by XY gives: ~t7 = (kgz — koz) [k]
: X Y
Since [k] holds true for every x and y = ¥ = —p? and v = —q°.

p and q are integers. Substituting these relations into [k] gives: p? + g = koz — kg2 [{]



The solutions of X(x) and Y (y) could be any periodic function. We choose:

Y(y) =Yysinqgy and X(x) = Xysinpx q,p are integers [m]

The solution of [m] depends on boundary value. In the case of metallic wave guide, in z direction, the tangential
(to the inner surface) component, i.e. E;4,, , = 0. This is to say that applying boundary conditions, i.e. E, =0 at x
, y=0 andatx =aand aty = b into [m] gives:

X(x=a)=Xosin(pa)=0:»pa=ln=>p=%z =>X(x)=XOsin(mx) (V)

a

Y(y=b) =Yysin(gh) =0=qgb =mn = q = % = Y(y) = Y, sin (%y) (VI) l,mareintegers

Replacing the amplitude of E,, seilkgz—0t); by the multiplication Ey , = X(x)Y (y),i.e.(V) - (VI), yields the complete
solution of the longitudinal component:

This is a standing wave within the — . (mx\ . (mTm : _ R

cross section of the hollow space, E; = Ep sin (T) S (Ty) ellkgz=0t) 5 (VII)
i.e. x-y plane. Its amplitude is time

independent. The Carrier wave is

amplitude modulated. The

envelope standing wave has Envelope wave Carrier wave

antinodes and nodes.






Electric field Ex component of the TE31 mode inside an x-band hollow metal waveguide.



Waveguide supplying power for the Argonne National
Example of waveguides in an air traffic Laboratory Advanced Photon Source.
control radar



https://en.wikipedia.org/wiki/Argonne_National_Laboratory
https://en.wikipedia.org/wiki/Advanced_Photon_Source
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Next, introducing the values p = —and g = —~ into (1), i.e. into p?+q* =k —k, gives:

2

@)2 + (%)2 = kol —k, = (92 + (%)2 _ k" kg Ui

T2

The integers [ and m define the mode of the standing wave in a givén x — y plane, its nodes and antinodes. Those
waves are indicated by the indexes I and m as follows: TM,,, and TE;,, of the standing wave E,. The relation between
the transverse components Ey, Ey, By, B, and the longitudinal compgnent E, are given by the equations

(e) and (f) above — :

Do the modes TM,, TMy; and TM,, exist in the hollow space of the Wave guide? Yes, No, Why?

Where A, is the carrier (particular wave, that reflected from the inner walls) wave’s wavelength in vacuum.
From IX we conclude that when Ay = Acytorf = A4 — 0, and the practical
meaning of that is that no wave is propagating along z direction along the waveguide.

Therfore,there is a frequency fcyiors after which no EM wave exist in metallic waveguide.

1_11l2+(m)2_1 1 .



Hence, it is concluded that:

The cutoff frequency is dependent on the waveguide dimensions. Waveguide with a given dimension acts as
a filter, attenuating waves with frequencies near the cutoff frequency. A non-monochromatic wave undergoes
dispersion in a waveguide.

2

. o . 1
Converting wavelengths to frequencies in Eq. IX, i.e. I
0

1 1 1\ mE 2
A2 T 2o _Z[(Z) T (F) ]_ 2 Ryrors (X)

/N my2
Multiplying [X] by c? gives: fczutoff = Z <—> + (E) (X1)

Furthermore:

a

Example: Whatisthe Ag.0¢r 0f a TM;, wave which travels along a waveguide having a cross section of 3X4 cm?

Introducing the given numbers in Eqg. (XI) gives:

1 _1(1 1\, 11 1\ o, 1(1649\ ., 125 e
—_— = - = —| — o = — el —— — =
22 2\ 2" T \97 1) Ta\169 ) T2 1™ ¢ =W




