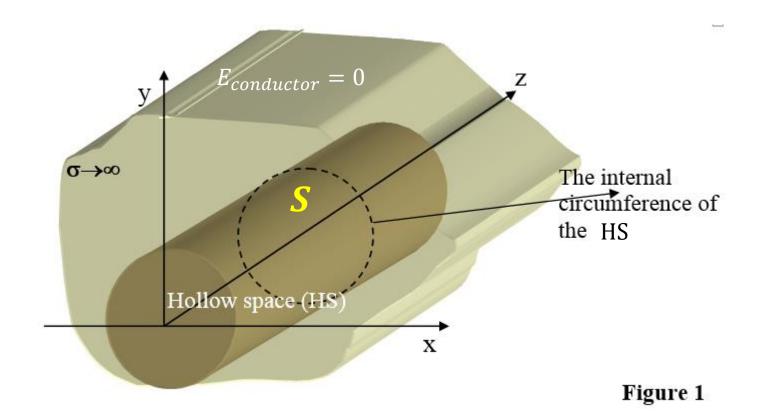
Chapter 5:

Metallic waveguides and cavities

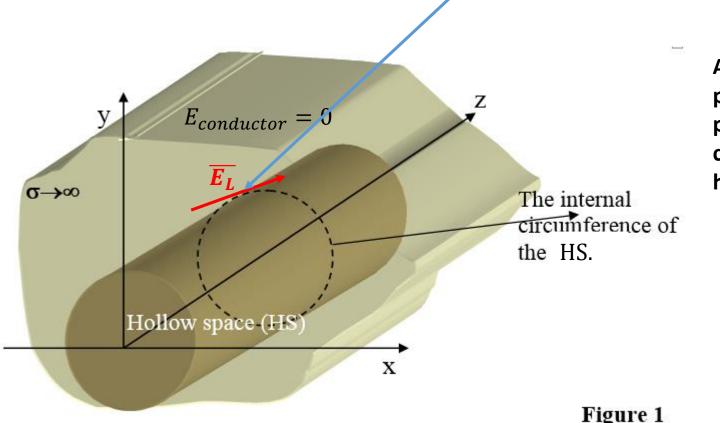
- Until now we have discussed wave solution of Maxwell's equations with plane wave fronts (i.e. having the same phase), unlimited in extent (unbound).
- This resulted in a transverse EM (TEM) wave having an infinite unbound wave front.
- On the other hand, we are interested in transmission, along a chosen direction, of EM power which can be realized lengthwise through a hollow line in a conductor (see Figure 1).
- When this happens, the propagating wave is **confined to the interior** of the hollow space.
- From Figure 1:

What are the wave types which can propagate along z direction in the hollow space?



1. Plane wavefront **TEM (which we learn until now).** As propagated along the z direction, then $E_z = 0$, $B_z = 0$ and the field components at the x-y plane (for instance the plane defined by the dashed circle) must be indifferent of x and/or y, in other words $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ must equal zero.

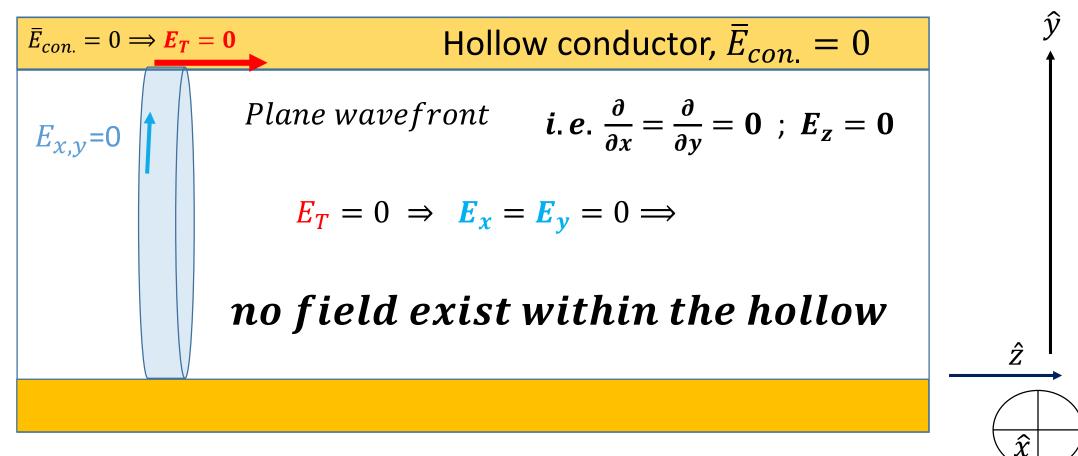
Therefore , under the continuity boundary conditions, i.e. $E_L = 0$, and being the wavefront **planar**, then the value of the fields E_x and/or E_y within this plane, must equal that on the circumference (dashed line), i.e. = 0. So we end with a <u>confined</u> plane wave whose $E_x = E_y = E_z = 0$ and hence we conclude that:



A plane TEM wave with wavefront perpendicular to guide axis cannot be propagated, i.e. Its energy cannot be transmitted through a conducting hollow space.

- 2. Can TEM wave which propagates along z direction ($E_z = 0$, $B_z = 0$) and <u>has no plane wavefront</u>, exist? i.e. • $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y} \neq 0$
- From TEM $\Rightarrow E_z = 0$, $B_z = 0 \Rightarrow \frac{\partial E_z}{\partial t} = \frac{\partial B_z}{\partial t} = 0$ and hence according to Maxwell's equations III and IV:
- The *z* components of curl \overline{E} and curl \overline{B} are zero as well.
- Thus, the electric field component within the x y plane, \overline{E}_{xy} , must be a conservative vector (electric) field, hence
- satisfying: $\bar{E}_x = -\frac{\partial V}{\partial x}$ and $\bar{E}_y = -\frac{\partial V}{\partial y}$. Furthermore, since in the present case $div\bar{E} = 0 = \rho$
- (divgrad) $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$
- Going back to Figure 1 and specifically to the inner circumference marked by dashed line, the boundary conditions dictates: $-\frac{\partial V}{\partial L} = \bar{E}_T = \bar{E}_L = 0$ and hence:
- V = constant all over the conducting inner surface of the hollow
- Hence these two characteristics of V: $del_{x,y}^2 = 0$ and $V_L = constant$ defines V as an electrostatic potential.
- Hence, the electric field within the hollow in every x y plane must be similar to that which exists in charged conductor whose surface corresponds to that of the hollow space. Next,
- Since within a conductor E = 0, even when charged, (unless there is an inner hollow –

a. **Can** TEM ($E_z = 0$) wave with **planar** wave front exist within a hollow conductor?



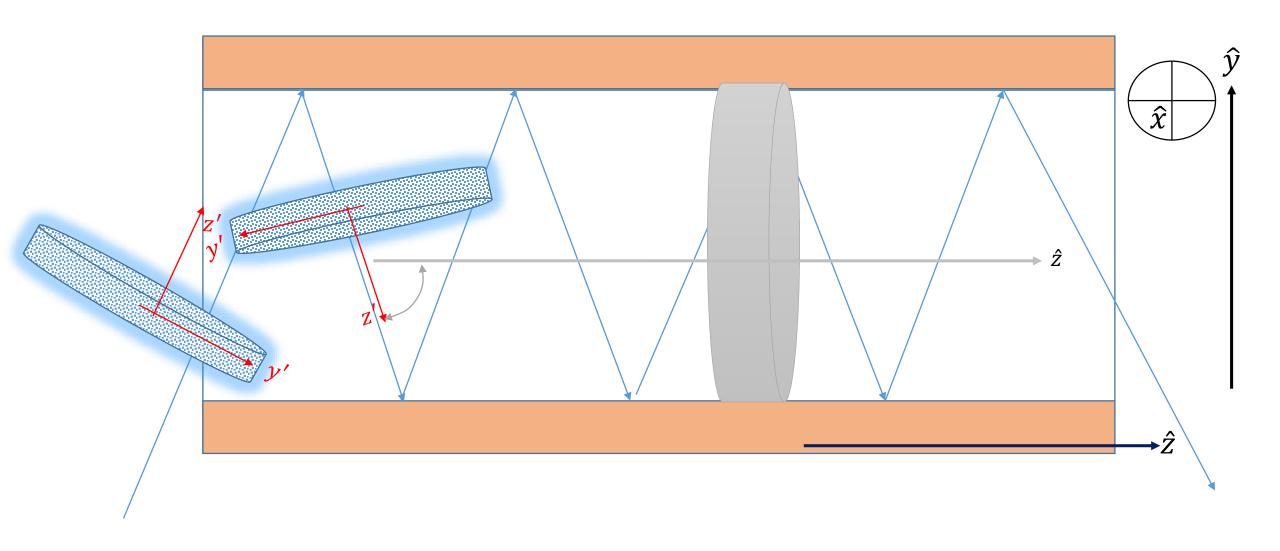
- No **TEM** type of **planar** wave front exists in **hollow** conductor.
- Since $E_x = E_y = 0$ and given that $E_z = 0 \implies Curl\overline{E} = 0 = -\overline{B} \implies \overline{B} = constant, zero \implies No EM$ wave with planar wave front can propagate along \hat{z} within the **hollow** conductor.

So in summary, it is concluded that the propagation of EMF wave of TEM type along a hollow space within a conductor is impossible.

Propagation of EM wave <u>oblique</u> to the axis of the hollow space in conductor.

- $\bar{k}_{particular} \not\parallel \hat{z} \Rightarrow$ multiple reflection of (the particular wave) from the interior metallic walls, which
- interfere with each other to form standing wave within the x y (S Fig. 2) plane, $\perp \hat{z}$, the hollow's cross section.
- Hence, though the particular wave is oblique to \hat{z} , and its carried fields are $\overline{E} \perp \overline{B} \perp \overline{k}_{particular}$, there will be always a field component in the direction of \hat{z} , i.e parallel to the hollow's axis.
- Two principal EM waves exist when propagating *oblique* to the axis of the hollow space in conductor:
- Transverse Electric (*TE*, B Wave) and transverse Magnetic (*TM*, E Wave).

Propagation of EM wave <u>oblique</u> - an illustration



$$TM; \quad E - wave:$$

$$B_z = 0, E_z \neq 0 \implies \text{a longitudinal wave of } E_z.$$

$$TE; \quad B - wave:$$

$$E_z = 0, B_z \neq 0 \implies \text{a longitudinal wave of } B_z.$$

Both TM and TE waves have no planar wavefront

Another solution can be a combination of TM and TE waves. However, their propagation along the hollow's axis is **not TEM** and **has no planar wavefront**

Modes and frequency range of the standing waves in x - y plane, $\perp to \hat{z}$, are dependent on the hollow's cross-section dimensions and the frequency of the carrier wave. Since along the z direction there are no restrictions, the EM disturbance spreads along it as a free wave, having a typical wave # k_{guide} .

<u>General</u>: The mathematical expression of the two **longitudinal wave components** are:

For **TM**
$$(B_z = 0)$$
: $E_{z0} \hat{z} e^{i(k_g z - \omega t)} \hat{z}$ and for **TE** $(E_z = 0)$: $B_{z0} e^{i(k_g z - \omega t)} \hat{z}$ [1]

Note:

- E_{z0} and B_{z0} are not constant as they were on plane wavefront, but vary across the x-y plane and thus are y and x dependent.
- This dependency will be found via Maxwell's equation under the mechanical restriction of the guide, the fact that $\sigma \rightarrow \infty$ and the boundary continuity $\Delta E_{tangent} = 0$.
- The rectangular hollow space dictates the use of **Cartesian coordinates** and hence from [1] the following conversions are yielded:

$$\frac{\partial}{\partial z} \to ik_{g} \quad and \quad \frac{\partial}{\partial t} \to -i\omega \qquad [2]$$
• As a result: $\operatorname{Curl} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_{x} & E_{y} & E_{y} \end{vmatrix} \to \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & ik_{g} \\ E_{x} & E_{y} & E_{y} \end{vmatrix} \quad and since \omega = k_{0}c, \quad \frac{\partial}{\partial t} \to i\omega = ik_{0}c$

Equations a-d represent a spectrum of solutions for the fields components in the x-y planes (hollow space cross sections), out of which the expression for E- and B-waves in the hollow space is determined as follows.

C

 $B_{\chi} = \frac{i}{(k_0^2 - k_0^2)} \left[-\frac{k_0}{c} \frac{\partial E_z}{\partial y} + k_g \frac{\partial B_z}{\partial z} \right]$

Extraction of *E*_{*x*}:

Multiplying Eq. II by k_g and Eq. III by $-k_0c$ even the coefficients of B_y in the two equations. Adding them and rearranging the equation gives:

$$E_x = \frac{i}{(k_0^2 - k_g^2)} \left[k_g \frac{\partial E_z}{\partial x} + c k_0 \frac{\partial B_z}{\partial y} \right]$$
[a]

Extraction of *B*_y:

Similarly, multiplying Eq. II by ik_0 and Eq. III by $-ick_g$ equals the coefficients of B_y in the two equations. Adding the them and rearranging the equation gives:

$$B_{y} = \frac{i}{(k_{0}^{2} - k_{g}^{2})} \left[\frac{k_{0}}{c} \frac{\partial E_{z}}{\partial x} + k_{g} \frac{\partial B_{z}}{\partial y} \right]$$
 [b]

Similar treatment of *Eqs. I and IV gives*:

and
$$E_y = \frac{i}{(k_0^2 - k_g^2)} \left[k_g \frac{\partial E_z}{\partial y} - c k_0 \frac{\partial B_z}{\partial x} \right]$$
 [d]

TM (E-wave)

Here we just need to substitute $B_z = 0$ in equations a-d. This left us with the following expressions:

$$E_x = \frac{i}{(k_0^2 - k_g^2)} k_g \frac{\partial E_z}{\partial x} ; \quad E_y = \frac{i}{(k_0^2 - k_g^2)} k_g \frac{\partial E_z}{\partial y} \qquad [e]$$

$$B_x = -\frac{i k_0 / c}{(k_0^2 - k_g^2)} \frac{\partial E_z}{\partial y} ; \quad B_y = -\frac{i k_0 / c}{(k_0^2 - k_g^2)} \frac{\partial E_z}{\partial x} \qquad [f]$$

Next, from[*e*] we get:

$$\frac{E_x}{E_y} = \frac{\frac{\partial E_z}{\partial x}}{\frac{\partial E_z}{\partial y}} \to \text{extractibng these derivations from } [f] \Longrightarrow \frac{E_x}{E_y} = -\frac{B_y}{B_x} \Longrightarrow E_x = -E_y \frac{B_y}{B_x} \Longrightarrow \qquad [g]$$
$$\implies (\bar{E} \cdot \bar{B})_{x-y \text{ plane}} = \left(-E_y \frac{B_y}{B_x} \hat{x} + E_y \hat{y}\right) \cdot \left(\bar{B}_x \hat{x} + \bar{B}_y \hat{y}\right) = 0$$

Conclusion: within the cross section of the hollow space $(x - y \ plane)$: $\overline{E} \perp \overline{B} \perp k_g$ and \overline{E} , \overline{B} are in phase.

Similar treatment yields similar results for B-wave, i.e. TE ($E_z = 0$) wave.

And what about the longitudinal component $E_z(r, t)$ of a TM wave? All that can be said is that it obeys the differential wave equation:

$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2} \qquad [h] \qquad \text{Next, Introducing } E_z = E_{0,z} e^{i(k_g z - \omega t)} \text{ into } [h] \text{ yields:}$$
$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} = \left(k_g^2 - \frac{\omega^2}{c^2}\right) E_z = \left(k_g^2 - k_0^2\right) E_z \qquad [i]$$

Separation of variables is employed to solve (the amplitude) $E_{0,z}$, i.e. by introducing $E_{0,z} = X(x)Y(y)$ into [i]:

$$Y\frac{\partial^2 X}{\partial x^2} + X\frac{\partial^2 Y}{\partial y^2} = \left(k_g^2 - k_0^2\right)XY \qquad [j]$$

and dividing [j] by XY gives: $\frac{X''}{X} + \frac{Y''}{Y} = \left(k_g^2 - k_0^2\right) \qquad [k]$

Since [k] holds true for every x and y
$$\implies \frac{X^{"}}{X} = -p^2$$
 and $\frac{Y^{"}}{Y} = -q^2$.

p and *q* are integers. Substituting these relations into [k] gives: $p^2 + q^2 = k_0^2 - k_g^2$ [l]

The solutions of X(x) and Y(y) could be any periodic function. We choose:

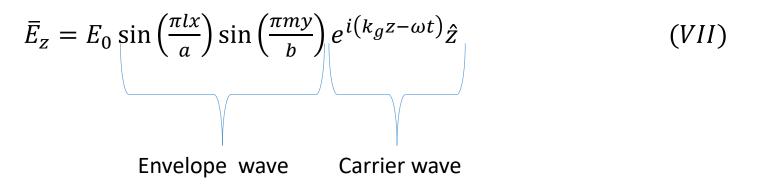
 $Y(y) = Y_0 sinqy$ and $X(x) = X_0 sinpx$ q, p are integers [m]

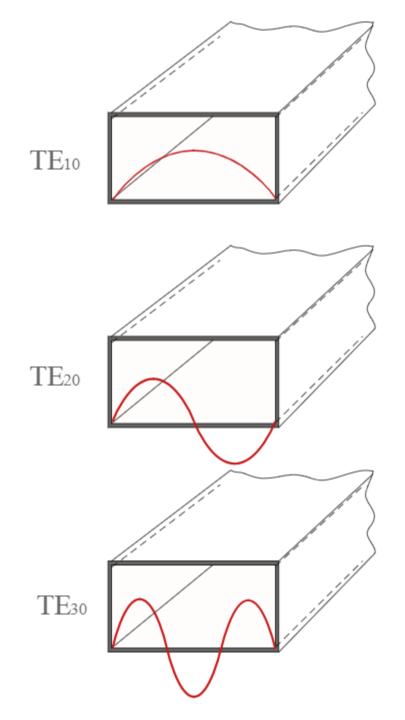
The solution of [m] depends on boundary value. In the case of metallic wave guide, in z direction, the tangential (to the inner surface) component, i.e. $E_{tan,z} = 0$. This is to say that applying boundary conditions, i.e. $E_z = 0$ at x , y = 0 and at x = a and at y = b into [m] gives:

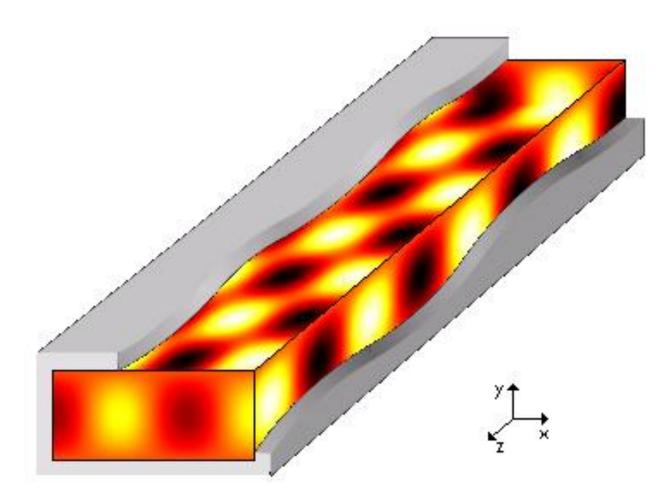
$$X(x = a) = X_0 \sin(pa) = 0 \Rightarrow pa = l\pi \Rightarrow p = \frac{l\pi}{a} \Rightarrow X(x) = X_0 \sin\left(\frac{l\pi}{a}x\right)$$
(V)
$$Y(y = b) = Y_0 \sin(qb) = 0 \Rightarrow qb = m\pi \Rightarrow q = \frac{m\pi}{b} \Rightarrow Y(y) = Y_0 \sin\left(\frac{m\pi}{b}y\right)$$
(VI) *l,m are integers*

Replacing the amplitude of $E_{z0} \hat{z} e^{i(k_g z - \omega t)} \hat{z}$ by the multiplication $E_{0,z} = X(x)Y(y)$, *i.e.* (V) · (VI), yields the complete solution of the **longitudinal** component:

This is a standing wave within the cross section of the hollow space, i.e. x-y plane. Its amplitude is time independent. The Carrier wave is amplitude modulated. The envelope standing wave has antinodes and nodes.







Electric field Ex component of the TE31 mode inside an x-band hollow metal waveguide.

Example of waveguides in an air traffic control radar

Waveguide supplying power for the <u>Argonne National</u> <u>Laboratory Advanced Photon Source</u>.

Next, introducing the values $p = \frac{l\pi}{a}$ and $q = \frac{m\pi}{b}$ into (l), i.e. into $p^2 + q^2 = k_0^2 - k_g^2$ gives: $\left(\frac{l\pi}{a}\right)^2 + \left(\frac{m\pi}{b}\right)^2 = k_0^2 - k_g^2 \implies \left(\frac{l}{a}\right)^2 + \left(\frac{m}{b}\right)^2 = \frac{k_0^2 - k_g^2}{\pi^2}$ (VIII)

The integers l and m define the mode of the standing wave in a given x - y plane, its **nodes** and **antinodes**. Those waves are indicated by the indexes l and m as follows: TM_{lm} and TE_{lm} of the standing wave E_z . The relation between the **transverse** components E_x , E_y , B_x , B_y and the **longitudinal** component E_z are given by the equations (e) and (f) above \Box .

Do the modes TM₀₀ TM₀₁ and TM₁₀ exist in the hollow space of the vave guide? Yes, No, Why?

Where λ_0 is the carrier (particular wave, that reflected from the inner walls) wave's wavelength in vacuum. The smaller λ_0 the larger λ_g ? From IX we conclude that when $\lambda_0 \rightarrow \lambda_{cutoff} \Longrightarrow \lambda_g \rightarrow \infty$, and the practical meaning of that is that no wave is propagating along z direction along the waveguide. Therfore, there is a frequency f_{cutoff} after which no EM wave exist in metallic waveguide.

$$\frac{1}{\lambda_{g}^{2}} = \frac{1}{\lambda_{0}^{2}} - \frac{1}{4} \left[\left(\frac{l}{a} \right)^{2} + \left(\frac{m}{b} \right)^{2} \right] \equiv \frac{1}{\lambda_{0}^{2}} - \frac{1}{\lambda_{cutoff}^{2}}$$

(IX)

Hence, it is concluded that:

The cutoff frequency is dependent on the waveguide dimensions. Waveguide with a given dimension acts as a filter, attenuating waves with frequencies near the cutoff frequency. A non-monochromatic wave undergoes dispersion in a waveguide.

Converting wavelengths to frequencies in Eq. IX, i.e. $\frac{1}{\lambda_0^2} \rightarrow \frac{f^2}{c^2}$

$$\frac{1}{\lambda_g^2} = \frac{1}{\lambda_0^2} - \frac{1}{4} \left[\left(\frac{l}{a} \right)^2 + \left(\frac{m}{b} \right)^2 \right] = \frac{f^2}{c^2} - \frac{1}{\lambda_{cutoff}^2} \tag{X}$$

Furthermore:

Multiplying [X] by
$$c^2$$
 gives: $f_{cutoff}^2 = \frac{c^2}{4} \left[\left(\frac{l}{a} \right)^2 + \left(\frac{m}{b} \right)^2 \right]$ (XI)

Example: What is the λ_{cutoff} of a TM_{11} wave which travels along a waveguide having a cross section of 3X4 cm?

Introducing the given numbers in Eq. (XI) gives:

$$\frac{1}{\lambda_c^2} = \frac{1}{4} \left(\frac{1}{3^2} + \frac{1}{4^2} \right) cm^{-2} = \frac{1}{4} \left(\frac{1}{9} + \frac{1}{16} \right) cm^{-2} = \frac{1}{4} \left(\frac{16+9}{16\cdot 9} \right) cm^{-2} = \frac{1}{4} \cdot \frac{25}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} = \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} + \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} + \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} + \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} + \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} + \frac{1}{4} \cdot \frac{1}{144} cm^{-2} \qquad \Longrightarrow \lambda_c = 5 cm^{-2} + \frac{1}{4} \cdot \frac{1}{144} cm^{-2} = \frac$$