
Metallic waveguides and cavities

Chapter 5: 



• Until now we have discussed wave solution of Maxwell’s equations with plane  wave fronts  (i.e. having the same 
phase), unlimited in extent (unbound). 

• This resulted in a transverse EM (TEM) wave having an infinite unbound wave front.
• On the other hand, we are interested in transmission, along a chosen direction, of EM power which can be realized 

lengthwise through a hollow line in a conductor (see Figure 1).  
• When this happens, the propagating wave is confined to the interior of the hollow space.
From Figure 1:  

What are the wave types which can propagate along z direction in the hollow space?

𝐸𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 = 0

𝑺
HS



1. Plane wavefront TEM (which we learn until now).  As propagated along the z direction, then 𝐸𝑧= 0, 𝐵𝑧= 0 and 
the field components at the x-y plane (for instance the plane defined by the dashed circle) must be indifferent of 

x and/or y, in other words 
𝝏

𝝏𝒙
and 

𝝏

𝝏𝒚
must equal zero. 

𝐸𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 = 0

HS.

𝑬𝑳

Therefore , under the continuity boundary conditions, i.e. 𝐸𝑳 = 0, and being the wavefront planar, then the value of the 
fields 𝐸𝑥 𝑎𝑛𝑑/𝑜𝑟 𝐸𝑦 within this plane, must equal that on the circumference (dashed line), i.e. = 0.

So we end with a confined plane wave whose  𝐸𝑥 = 𝐸𝑦 = 𝐸𝑧 = 0 and hence we conclude that:

A plane TEM wave with wavefront 
perpendicular to guide axis cannot be 
propagated, i.e.  Its energy 
cannot be transmitted through a conducting 
hollow space. 



2. Can TEM wave which propagates along z direction 𝑬𝒛 = 𝟎, 𝑩𝒛= 𝟎 and has no plane wavefront, exist?  i.e.

•
𝜕

𝜕𝑥
and 

𝜕

𝜕𝑦
≠ 0

• From TEM  ⟹ 𝑬𝒛= 𝟎, 𝑩𝒛= 𝟎 ⟹
𝜕𝐸𝑧

𝜕𝑡
=

𝜕𝐵𝑧

𝜕𝑡
= 0 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑀𝑎𝑥𝑤𝑒𝑙𝑙′𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝐼𝐼𝐼 𝑎𝑛𝑑 𝐼𝑉:

• The 𝑧 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝒄𝒖𝒓𝒍 ഥ𝑬 and 𝒄𝒖𝒓𝒍 ഥ𝑩 are zero as well.  
• Thus, the electric field component within the x − y plane, ത𝐸𝑥𝑦 , must be a conservative vector (electric) field, hence 

• 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔: ത𝐸𝑥 = −
𝜕𝑉

𝜕𝑥
𝑎𝑛𝑑 ത𝐸𝑦 = −

𝜕𝑉

𝜕𝑦
.  Furthermore, since in the present case 𝑑𝑖𝑣 ത𝐸 = 0 = 𝜌

• (divgrad)  
𝝏𝟐𝑽

𝝏𝒙𝟐
+

𝝏𝟐𝑽

𝝏𝒚𝟐
= 𝟎

• Going back to Figure 1 and specifically to the inner circumference marked by dashed line, the boundary conditions 

dictates:  −
𝜕𝑉

𝜕𝐿
= ത𝐸𝑇 = ത𝐸𝑳 = 0 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒:

• 𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑙𝑙 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑛𝑔 𝑖𝑛𝑛𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑜𝑙𝑙𝑜𝑤

• Hence these two characteristics of V: 𝒅𝒆𝒍𝒙,𝒚
𝟐 = 𝟎 𝒂𝒏𝒅 𝑽𝑳 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑑𝑒𝑓𝑖𝑛𝑒𝑠 𝑉 𝑎𝑠 𝑎𝑛 𝒆𝒍𝒆𝒄𝒓𝒐𝒔𝒕𝒂𝒕𝒊𝒄 𝒑𝒐𝒕𝒆𝒏𝒕𝒊𝒂𝒍.

• Hence, the electric field within the hollow in every 𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒 must be similar to that which exists in charged 
conductor whose surface corresponds to that of the hollow space.  Next, 

• Since within a conductor 𝐸 = 0, 𝑒𝑣𝑒𝑛 𝑤ℎ𝑒𝑛 𝑐ℎ𝑎𝑟𝑔𝑒𝑑, ሺ𝑢𝑛𝑙𝑒𝑠𝑠 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑛𝑒𝑟 ℎ𝑜𝑙𝑙𝑜𝑤 −



• No TEM type of planar wave front exists in hollow conductor.

• Since 𝐸𝑥 = 𝐸𝑦 = 0 and 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝐸𝑧 = 0 ⟹ 𝐶𝑢𝑟𝑙 ത𝐸 = 0 = − ሶത𝐵 ⟹ ത𝐵 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕, 𝒛𝒆𝒓𝒐

⟹𝑁𝑜 𝐸𝑀 𝑤𝑎𝑣𝑒 𝑤𝑖𝑡ℎ 𝑝𝑙𝑎𝑛𝑎𝑟 𝑤𝑎𝑣𝑒 𝑓𝑟𝑜𝑛𝑡 𝑐𝑎𝑛 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑎𝑙𝑜𝑛𝑔 Ƹ𝑧 within the hollow
conductor.

ො𝑦

Ƹ𝑧

ො𝑥

a.  Can T𝐸𝑀 𝑬𝒛 = 𝟎 𝑤𝑎𝑣𝑒 𝑤𝑖𝑡ℎ 𝒑𝒍𝒂𝒏𝒂𝒓 𝑤𝑎𝑣𝑒 𝑓𝑟𝑜𝑛𝑡 𝑒𝑥𝑖𝑠𝑡 within a hollow conductor?

𝐸𝑥,𝑦=0

𝒏𝒐 𝒇𝒊𝒆𝒍𝒅 𝒆𝒙𝒊𝒔𝒕 𝒘𝒊𝒕𝒉𝒊𝒏 𝒕𝒉𝒆 𝒉𝒐𝒍𝒍𝒐𝒘

ത𝐸𝑐𝑜𝑛. = 0 ⟹ 𝑬𝑻 = 𝟎

𝐸𝑇 = 0 ⇒ 𝑬𝒙 = 𝑬𝒚 = 0 ⟹

Hollow conductor, ത𝐸𝑐𝑜𝑛. = 0

𝒊. 𝒆.
𝝏

𝝏𝒙
=

𝝏

𝝏𝒚
= 𝟎 ; 𝑬𝒛 = 𝟎𝑃𝑙𝑎𝑛𝑒 𝑤𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡

ത𝐸𝑐𝑜𝑛. = 0 ⟹ 𝑬𝑻 = 𝟎



So in summary, it is concluded that the
propagation of EMF wave of TEM type along a
hollow space within a conductor is impossible.



• ത𝑘𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 ∦ Ƹ𝑧 ⟹ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑤𝑎𝑣𝑒

𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐 𝑤𝑎𝑙𝑙𝑠, 𝑤ℎ𝑖𝑐ℎ

• interfere with each other to form standing wave within the 𝑥 − y 𝑺 − 𝐹𝑖𝑔. 2 plane, ⊥ Ƹ𝑧, the hollow’s cross 

section.

• Hence, though the particular wave is oblique to Ƹ𝑧, and its carried fields are  ത𝐸 ⊥ ത𝐵 ⊥ ത𝑘𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 , there will 

be always a field component in the direction of Ƹ𝑧, i.e parallel to the hollow’s axis.

• Two principal EM waves exist when propagating oblique to the axis of the hollow space in conductor:

• Transverse Electric (𝑻𝑬, 𝑩 −𝑾𝒂𝒗𝒆) and transverse Magnetic (𝑻𝑴, 𝑬 −𝑾𝒂𝒗𝒆). 

Propagation of EM wave oblique to the axis of the 
hollow space in conductor.



ො𝑦

Ƹ𝑧

ො𝑥

Propagation of EM wave oblique - an illustration

Ƹ𝑧



𝑇𝑀; 𝐸 − 𝑤𝑎𝑣𝑒:
𝐵𝑧 = 0, 𝐸𝑧 ≠ 0 ⟹ a longitudinal wave of 𝐸𝑧.

𝑇𝐸; 𝐵 − 𝑤𝑎𝑣𝑒:
𝐸𝑧 = 0, 𝐵𝑧 ≠ 0 ⟹ a longitudinal wave of 𝐵𝑧.

Both TM and TE waves have no planar wavefront

Another solution can be a combination of  TM and TE waves.  However, their propagation along the 
hollow’s axis is not TEM and has no planar wavefront

Modes and frequency range of the standing waves in 𝑥 − y plane, ⊥ 𝑡𝑜 Ƹ𝑧, are dependent on the hollow’s 
cross-section dimensions and the frequency of the carrier wave. Since along the z direction there are no 
restrictions, the EM disturbance spreads along it as a free wave, having a typical wave # 𝑘𝑔𝑢𝑖𝑑𝑒.



General:   The mathematical expression of the two longitudinal wave components are:

For    TM (𝐵𝑧 = 0): 𝐸𝑧0 Ƹ𝑧𝑒𝑖 𝑘𝑔𝑧−𝜔𝑡 Ƹ𝑧 and for TE (𝐸𝑧 = 0): 𝐵𝑧0 𝑒
𝑖 𝑘𝑔𝑧−𝜔𝑡 Ƹ𝑧 [1]

Note:
• 𝐸𝑧0 and 𝐵𝑧0 are not constant as they were on plane wavefront, but vary across the x-y plane and thus are 

y and x dependent.   
• This dependency will be found via Maxwell’s equation under the mechanical restriction of the guide, the fact 

that 𝜎 → ∞ 𝑎𝑛𝑑 the boundary continuity ∆𝐸𝑡𝑎𝑛𝑔𝑒𝑛𝑡 = 0.

• The rectangular hollow space dictates the use of Cartesian coordinates and hence from  [1] the following 
conversions are yielded:

𝜕

𝜕𝑧
→ 𝑖𝑘𝑔 𝑎𝑛𝑑

𝜕

𝜕𝑡
→ −𝑖𝜔 [2]

• As a result:  Curl =

ො𝑥 ො𝑦 Ƹ𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐸𝑥 𝐸𝑦 𝐸𝑦

→

ො𝑥 ො𝑦 Ƹ𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑦
𝑖𝑘𝑔

𝐸𝑥 𝐸𝑦 𝐸𝑦

and since 𝜔 = 𝑘0𝑐,   
𝜕

𝜕𝑡
→ 𝑖𝜔 = 𝑖𝑘0𝑐



Implying  𝛻 × ത𝐸 = − ሶത𝐵 𝑤𝑒 𝑔𝑒𝑡:

𝐼: 𝑓𝑜𝑟 ො𝑥:
𝜕𝐸𝑧
𝜕𝑦

− 𝑖𝑘𝑔𝐸𝑦 = − −𝑖𝜔𝐵𝑥 = 𝑖𝑘0𝑐𝐵𝑥

𝐼𝐼: 𝑓𝑜𝑟 ො𝑦: −
𝜕𝐸𝑧
𝜕𝑥

− 𝑖𝑘𝑔𝐸𝑥 = 𝑖𝑘0𝑐𝐵𝑥 = 𝑖𝑘0𝑐𝐵𝑦

Implying  𝛻 × ത𝐵 = −
1

𝑐2
ሶത𝐸 𝑤𝑒 𝑔𝑒𝑡:

𝐼𝐼𝐼: 𝑓𝑜𝑟 ො𝑥:
𝜕𝐵𝑧
𝜕𝑦

− 𝑖𝑘𝑔𝐵𝑦 = −𝑖
𝑘0
𝑐
𝐸𝑥

𝐼𝑉: 𝑓𝑜𝑟 ො𝑦: −
𝜕𝐵𝑧
𝜕𝑥

− 𝑖𝑘𝑔𝐵𝑥 = −𝑖
𝑘0
𝑐
𝐸𝑦

Extraction of 𝑬𝒙:

Multiplying 𝐸𝑞. 𝐼𝐼 by 𝑘𝑔 and 𝐸𝑞. 𝐼𝐼𝐼 by −𝑘0𝑐 even the 

coefficients of 𝐵𝑦 in the two equations.  Adding them 

and rearranging the equation gives:

𝐸𝑥 =
𝑖

ሺ𝑘0
2−𝑘𝑔

2)
𝑘𝑔

𝜕𝐸𝑧

𝜕𝑥
+ 𝑐𝑘0

𝜕𝐵𝑧

𝜕𝑦
[a]

Extraction of 𝑩𝒚:

Similarly, multiplying 𝐸𝑞. 𝐼𝐼 by 𝑖𝑘0 and 𝐸𝑞. 𝐼𝐼𝐼 by −𝑖𝑐𝑘𝑔
equals the coefficients of 𝐵𝑦 in the two equations.  Adding 

the them and rearranging the equation gives:

𝐵𝑦 =
𝑖

ሺ𝑘0
2−𝑘𝑔

2)

𝑘0

𝑐

𝜕𝐸𝑧

𝜕𝑥
+ 𝑘𝑔

𝜕𝐵𝑧

𝜕𝑦
[b]

𝐵𝑥 =
𝑖

ሺ𝑘0
2−𝑘𝑔

2)
−

𝑘0

𝑐

𝜕𝐸𝑧

𝜕𝑦
+ 𝑘𝑔

𝜕𝐵𝑧

𝜕𝑧
[c]          and

Similar treatment of 𝑬𝒒𝒔. 𝑰 𝒂𝒏𝒅 𝑰𝑽 𝒈𝒊𝒗𝒆𝒔:

𝐸𝑦 =
𝑖

ሺ𝑘0
2−𝑘𝑔

2)
𝑘𝑔

𝜕𝐸𝑧

𝜕𝑦
− 𝑐𝑘0

𝜕𝐵𝑧

𝜕𝑥
[d] 

Equations a-d represent a spectrum of 

solutions for the fields components in the 

x-y planes (hollow space cross sections), out 

of which the expression for E- and B-waves 

in the hollow space is determined as follows.



TM  (E-wave)

Here we just need to substitute 𝐵𝑧 = 0 in equations a-d.  This left us with the following expressions: 

𝐸𝑥 =
𝑖

ሺ𝑘0
2 − 𝑘𝑔

2)
𝑘𝑔

𝜕𝐸𝑧
𝜕𝑥

; 𝐸𝑦 =
𝑖

ሺ𝑘0
2 − 𝑘𝑔

2)
𝑘𝑔

𝜕𝐸𝑧
𝜕𝑦

[𝑒]

𝐵𝑥 = −
𝑖 Τ𝑘0 𝑐

ሺ𝑘0
2 − 𝑘𝑔

2)

𝜕𝐸𝑧
𝜕𝑦

; 𝐵𝑦 = −
𝑖 Τ𝑘0 𝑐

ሺ𝑘0
2 − 𝑘𝑔

2)

𝜕𝐸𝑧
𝜕𝑥

[𝑓]

Next, from  [𝑒] we get:

𝐸𝑥
𝐸𝑦

=

𝜕𝐸𝑧
𝜕𝑥
𝜕𝐸𝑧
𝜕𝑦

→ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑏𝑛𝑔 𝑡ℎ𝑒𝑠𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑓 ⟹
𝐸𝑥
𝐸𝑦

= −
𝐵𝑦

𝐵𝑥
⟹ 𝐸𝑥 = −𝐸𝑦

𝐵𝑦

𝐵𝑥
⟹ [𝑔]

⟹ ത𝐸 ∙ ത𝐵 𝑥−𝑦 𝑝𝑙𝑎𝑛𝑒 = −𝐸𝑦
𝐵𝑦

𝐵𝑥
ො𝑥 +𝐸𝑦 ො𝑦 ∙ ത𝐵𝑥 ො𝑥 + ത𝐵𝑦 ො𝑦 = 0

Conclusion: within the cross section of the hollow space ሺ𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒):   ത𝐸 ⊥ ത𝐵 ⊥ 𝑘𝑔 and ത𝐸, ത𝐵 are in phase.

Similar treatment yields similar results for B-wave, i.e. TE ሺ𝐸𝑧= 0) wave.



And what about the longitudinal component 𝑬𝒛 𝒓, 𝒕 of a TM wave?  All that can be said is that it obeys 
the differential wave equation:  

𝜕2𝐸𝑧
𝜕𝑥2

+
𝜕2𝐸𝑧
𝜕𝑦2

+
𝜕2𝐸𝑧
𝜕𝑧2

=
1

𝑐2
𝜕2𝐸𝑧
𝜕𝑡2

[ℎ] Next,   Introducing  𝐸𝑧 = 𝐸0,𝑧𝑒
𝑖ሺ𝑘𝑔𝑧−𝜔𝑡) into ℎ 𝑦𝑖𝑒𝑙𝑑𝑠:

𝜕2𝐸𝑧
𝜕𝑥2

+
𝜕2𝐸𝑧
𝜕𝑦2

= 𝑘𝑔
2 −

𝜔2

𝑐2
𝐸𝑧 = 𝑘𝑔

2 − 𝑘0
2 𝐸𝑧 [𝑖]

Separation of variables is employed to solve (the amplitude) 𝐸0,𝑧, i.e. 𝑏𝑦 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝐸0,𝑧 = 𝑋 𝑥 𝑌 𝑦 𝑖𝑛𝑡𝑜 𝑖 :

𝑌
𝜕2𝑋

𝜕𝑥2
+ 𝑋

𝜕2𝑌

𝜕𝑦2
= 𝑘𝑔

2 − 𝑘0
2 𝑋𝑌 [𝑗]

Since 𝑘 holds true for every 𝑥 𝑎𝑛𝑑 𝑦 ⟹

𝑎𝑛𝑑 𝑑ividing [j] by 𝑋𝑌 𝑔𝑖𝑣𝑒𝑠:
𝑋"

𝑋
+

𝑌"

𝑌
= 𝑘𝑔

2 − 𝑘0
2 [𝑘]

𝑝 𝑎𝑛𝑑 𝑞 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠. Substituting these relations into 𝑘 gives:    𝑝2 + 𝑞2 = 𝑘0
2 − 𝑘𝑔

2
[𝑙]

𝑋"

𝑋
= −𝑝2 𝑎𝑛𝑑

𝑌"

𝑌
= −𝑞2.



The solutions of 𝑋 𝑥 𝑎𝑛𝑑 𝑌 𝑦 could be any periodic function.  We choose: 

𝒀 𝒚 = 𝒀𝟎𝒔𝒊𝒏𝒒𝒚 and         𝑿 𝒙 = 𝑿𝟎𝒔𝒊𝒏𝒑𝒙 𝑞, 𝑝 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 [m]                                                   

𝑋 𝑥 = 𝑎 = 𝑋0 sin 𝑝𝑎 = 0 ⟹ 𝑝𝑎 = 𝑙𝜋⟹ 𝑝 =
𝑙𝜋

𝑎
⟹ 𝑋 𝑥 = 𝑋0 sin

𝑙𝜋

𝑎
𝑥 ሺ𝑉)

𝑌 𝑦 = 𝑏 = 𝑌0 sin 𝑞𝑏 = 0 ⟹ 𝑞𝑏 = 𝑚𝜋⟹ 𝑞 =
𝑚𝜋

𝑏
⟹ 𝑌 𝑦 = 𝑌0 sin

𝑚𝜋

𝑏
𝑦 𝑉𝐼 𝑙,𝑚 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠

Replacing the amplitude of 𝑬𝒛𝟎 Ƹ𝑧𝑒𝑖 𝑘𝑔𝑧−𝜔𝑡 Ƹ𝑧 by the multiplication 𝐸0,𝑧 = 𝑋 𝑥 𝑌 𝑦 , 𝑖. 𝑒. V ∙ 𝑉𝐼 , yields the complete 
solution of the longitudinal component:

ത𝐸𝑧 = 𝐸0 sin
𝜋𝑙𝑥

𝑎
sin

𝜋𝑚𝑦

𝑏
𝑒𝑖 𝑘𝑔𝑧−𝜔𝑡 Ƹ𝑧 ሺ𝑉𝐼𝐼)

Carrier waveEnvelope  wave

This is a standing wave within the 
cross section of the hollow space, 
i.e. x-y plane.  Its amplitude is time 
independent.  The Carrier wave is 
amplitude modulated.  The 
envelope standing wave has 
antinodes and nodes. 

The solution of [𝑚] depends on boundary value.  In the case of metallic wave guide, in z direction, the tangential 

(to the inner surface) component, i.e. 𝐸𝑡𝑎𝑛, 𝑧 = 0. 𝑇ℎ𝑖𝑠 𝑖𝑠 𝑡𝑜 𝑠𝑎𝑦 𝑡ℎ𝑎𝑡 applying boundary conditions, i.e.   𝐸𝑧 = 0 𝑎𝑡 𝑥
, 𝑦 = 0 𝑎𝑛𝑑 𝑎𝑡 𝑥 = 𝑎 𝑎𝑛𝑑 𝑎𝑡 𝑦 = 𝑏 𝑖𝑛𝑡𝑜 [𝑚] gives: 





Electric field Ex component of the TE31 mode inside an x-band hollow metal waveguide.



Example of waveguides in an air traffic 

control radar

Waveguide supplying power for the Argonne National 

Laboratory Advanced Photon Source.

https://en.wikipedia.org/wiki/Argonne_National_Laboratory
https://en.wikipedia.org/wiki/Advanced_Photon_Source


Next, introducing the values 𝑝 =
𝑙𝜋

𝑎
and 𝑞 =

𝑚𝜋

𝑏
into 𝑙 , 𝑖. 𝑒. 𝑖𝑛𝑡𝑜 𝑝2 + 𝑞2 = 𝑘0

2 − 𝑘𝑔
2

gives:

𝑙𝜋

𝑎

2

+
𝑚𝜋

𝑏

2

= 𝑘0
2 − 𝑘𝑔

2
⟹

𝑙

𝑎

2

+
𝑚

𝑏

2

=
𝑘0

2 − 𝑘𝑔
2

𝜋2
ሺ𝑉𝐼𝐼𝐼)

The integers 𝑙 𝑎𝑛𝑑 𝑚 define the mode of the standing wave 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒, its nodes and antinodes.  Those 
waves are indicated by the indexes 𝒍 𝒂𝒏𝒅𝒎 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠: 𝑇𝑀𝑙𝑚 𝑎𝑛𝑑 𝑇𝐸𝑙𝑚 of the standing wave 𝐸𝑧. The relation between 
the transverse components 𝐸𝑥, 𝐸𝑦 , 𝐵𝑥 , 𝐵𝑦 and the longitudinal component 𝐸𝑧 are given by the equations 

𝑒 𝑎𝑛𝑑 𝑓 𝑎𝑏𝑜𝑣𝑒 .       

Do the modes TM00, TM01 and TM10 exist in the hollow space of the wave guide?  Yes, No, Why?

One should distinguish between the particular (TEM) wave by being reflected from the metallic wales and the 

perturbation propagating along the axis of the hollow space.  To the latter we attributed the wave # 𝑘𝑔 and wavelength 

𝜆𝑔. The constrains of 𝜆𝑔 in a given waveguide is as follows:   From 𝑉𝐼𝐼𝐼 we have: 

−
2𝜋 2

𝜆𝑔
2 +

2𝜋 2

𝜆0
2

1

𝜋2
=

𝑙

𝑎

2

+
𝑚

𝑏

2

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝜆𝑔:

1

𝜆𝑔
2 =

1

𝜆0
2 −

1

4

𝑙

𝑎

2

+
𝑚

𝑏

2

≡
1

𝜆0
2 −

1

𝜆𝑐𝑢𝑡𝑜𝑓𝑓
2 ሺ𝐼𝑋)

Where 𝜆0 is the carrier (particular wave, that reflected from the inner walls) wave’s wavelength in vacuum. 
The smaller 𝜆0 the larger 𝜆𝑔?  From IX we conclude that when 𝜆0 → 𝜆𝑐𝑢𝑡𝑜𝑓𝑓 ⟹ 𝜆𝑔 ⟶∞,𝑎𝑛𝑑 the practical

meaning 𝑜𝑓 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑎𝑡 𝑛𝑜 𝑤𝑎𝑣𝑒 𝑖𝑠 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑛𝑔 𝑎𝑙𝑜𝑛𝑔 𝑧 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑤𝑎𝑣𝑒𝑔𝑢𝑖𝑑𝑒.
𝑇ℎ𝑒𝑟𝑓𝑜𝑟𝑒, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓𝑐𝑢𝑡𝑜𝑓𝑓 𝑎𝑓𝑡𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑛𝑜 𝐸𝑀 𝑤𝑎𝑣𝑒 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐 𝑤𝑎𝑣𝑒𝑔𝑢𝑖𝑑𝑒.



The cutoff frequency is dependent on the waveguide dimensions. Waveguide with a given dimension acts as 
a filter, attenuating waves with frequencies near the cutoff frequency. A non-monochromatic wave undergoes 
dispersion in a waveguide.

Converting wavelengths to frequencies in Eq. IX, i.e. 
1

𝜆0
2 →

𝑓2

𝑐2

1

𝜆𝑔
2 =

1

𝜆0
2 −

1

4

𝑙

𝑎

2
+

𝑚

𝑏

2
=

𝑓2

𝑐2
−

1

𝜆𝑐𝑢𝑡𝑜𝑓𝑓
2 ሺ𝑋)

Multiplying [X]  by 𝑐2 gives: 𝑓𝑐𝑢𝑡𝑜𝑓𝑓
2 =

𝑐2

4

𝑙

𝑎

2

+
𝑚

𝑏

2

ሺ𝑋𝐼)

Example:  What is the  𝜆𝑐𝑢𝑡𝑜𝑓𝑓 𝑜𝑓 𝑎 𝑇𝑀11 wave which travels along a waveguide having a cross section of 3X4 cm?

Introducing the given numbers in Eq.  (XI) gives: 

1

𝜆𝑐
2 =

1

4

1

32
+

1

42
𝑐𝑚−2 =

1

4

1

9
+

1

16
𝑐𝑚−2 =

1

4

16 + 9

16 ∙ 9
𝑐𝑚−2 =

1

4
∙
25

144
𝑐𝑚−2 ⟹ 𝜆𝑐 = 5𝑐𝑚

Furthermore:

Hence, it is concluded that:


