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Transmission lines

Transmission lines are used (as are waveguides) to guide electromagnetic waves from one place to an-
other. A coaxial cable (used, for example, to connect a radio or television to an aerial) is an example of

a transmission line. Transmission lines may be less bulky and less expensive than waveguides; but they
generally have higher losses, so are more appropriate for carrying low-power signals over short distances.
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11.1 L model of a transmission line

Consider an infinitely long, parallel wire with zero resistance. In general, the wire will have some
inductance per unit length, £, which means that when an alternating current / flows in the wire, there
will be a potential difference between different points along the wire (Fig.[22). If V' is the potential at

some point along the wire with respect to earth, then the potential difference between two points along
the wire is given by:
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In general, as well as the inductance, there will also be some capacitance per unit length, C,
between the wire and earth (Fig.[23). This means that the current in the wire can vary with position:
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Fig. 23: Capacitance in a transmission line.
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Differentiating Eq.271 with respect to t and of Eq. 272 in respect to x yield correspondingly:
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Similarly (by differentiating (27 1)) with respect to = and (272)) with respect to ), we find:
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Equations (275) and (276

) are wave equations for the current in the wire, and the voltage between
the wire and earth. The waves travel with speed v, given by:
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The solutions to the wave equations may be written:
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where the phase velocity is:
=1 (280)
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Note that the inductance per unit length L and the capacitance per unit length C are real and positive.
Therefore, if the frequency w is real, the wave number & will also be real: this implies that waves prop-

agate along the transmission line with constant amplitude. This result is expected, given our assumption
about the line having zero resistance.

The solutions must also satisfy the first-order equations (269) and (270). Substituting the above
solutions into these equations, we find:
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Z is the characteristic impedance of the transmission line and measured in ohms Q .

Hence:



Note that, since L, and ' are real and positive, the impedance is a real number:
this means that the voltage and current are in phase. The characteristic impedance of a transmission line
is analogous to the impedance of a medium for electromagnetic waves: the impedance of a transmission
line gives the ratio of the voltage amplitude to the current amplitude; the impedance of a medium for
electromagnetic waves gives the ratio of the electric field amplitude to the magnetic field amplitude.

11.2 Impedance matching

So far, we have assumed that the transmission line has infinite length. Obviously, this cannot be achieved
in practice. We can terminate the transmission line using a “load” with impedance Zj, that dissipates
the energy in the wave while maintaining the same ratio of voltage to current as exists all along the
transmission line — see Fig.[24] In that case, our above analysis for the infinite line will remain valid for
the finite line, and we say that the impedances of the line and the load are properly matched.
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Fig 24: Termination of
transmission line with
impedance R.



What happens if the impedance of the load, 7}, is not properly matched to the characteristic
impedance of the transmission line, Z7?

In that case, we need to consider a solution consisting of a
superposition of waves travelling in opposite directions:

V = Ve i(kx— L;,It}_|_ﬁ Voe —kr— :.uf.)'

TRy T af T - (284)
. . — = —L—. (271
The corresponding current is given by: dr g (271
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Note the minus sign in the second term in the expression for the current: this comes from equations (
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and m [ et us take the end of the transmission line, where the load 1s located, to be at = = 0. At this
position, we have:
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If the impedance of the load is Z; then: Zy = 7= Zﬁ (288)

Solving the equation for K, which gives the relative amplitude and phase of the “reflected” wave one gets
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Note: when Z; = Z,= no reflected wave i.e. the termination is matched to the characteristic transmission line impedance




11.3 “Lossy’”’ transmission lines
So far, we have assumed that the conductors in the transmission line have zero resistance, and are sep-

arated by a perfect insulator. Usually, though, the conductors will have finite conductivity; and the
insulator will have some finite resistance. To understand the impact that this has, we need to modify our

transmission line model to include:
— aresistance per unit length R in series with the inductance;

— a conductance per unit length G in parallel with the capacitance.
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The modified transmission line 1s illustrated in Fig i) I+ )
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The equations for the current and voltage are then: - Lox Rox
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We can find solutions to the equations (290) and (291) for the voltage and current in the lossy transmis-
sion line by considering the case that we propagate a wave with a single, well-defined frequency w. In
that case, we can replace each time derivative by a factor —iw. The equations become:
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The new equations (292) and (293)) for the lossy transmission line look exactly like the original equations

(271)) and (272)) for a lossless transmission line, but with the capacitance C' and inductance L replaced
by (complex) quantities C' and L. The imaginary parts of C' and L characterise the losses in the lossy
transmission line. av
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Mathematically, we can solve the equations for a lossy transmission line in exactly the same way
as we did for the lossless line. In particular, we find for the phase velocity:
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and for the impedance:
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Since the impedance (296)) is now a complex number, there will be a phase difference (given by the
complex phase of the impedance) between the current and voltage in the transmission line. Note that
the phase velocitv (295) depends explicitlv on the freauencv.

That means that a lossy transmission line
will exhibit dispersion: waves of different frequencies will travel at different speeds, and a the shape of
a wave “pulse” composed of different frequencies will change as it travels along the transmission line.

Dispersion is one reason why it is important to keep losses in a transmission line as small as possible (for
example, by using high-quality materials). The other reason is that in a lossy transmission line, the wave
amplitude will attenuate, much like an electromagnetic wave propagating in a conductor.



Recall that we can write the phase velocity:
v = %, (297)

where k is the wave number appearing in the solution to the wave equation:

and similarly for the current /. Using Eq. (295) for the phase velocity, we have:
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Let us assume R <« wl (i.e. good conductivity along the transmission line) and G < wC' (i.e. poor
conductivity between the lines); then we can make a Taylor series expansion, to find:
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Finally, we write:
k=a+1f, (301)

and equate real and imaginary parts in equation (300) to give:
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and: R
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where Zg = /L /C is the impedance with R = G = 0 (not to be confused with the impedance of free
space).

Note that since:
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the value of a gives the wavelength A = 1/a, and the value of 3 gives the attenuation length § = 1/4.



