Hertzian Dipole Radiation

Reminder

The Four Maxwell Equations in Vacuum:

(a) VE = p/e, (b) VXxE=-B

(c) VB=0 (d) VxB=puJ+E/c

We have proven B =V x A and on the other hand, derive from (b):
VxE=-B=-VxA = E=-A

Equations for the general relation between fields (E, B) and potentials (V, A) are given by:

E=—-A-V/V
_— = [1]

In an Dynamic Electrostatic State

B:VXI-X [2]

To find the dependence of V and A on time and space, let us substitute the general expressions,
[1] and [2], in Maxwell Equation (d):
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Rearranging equations:
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In order to satisfy both the static (7 = .4 =0) and the dynamic states, the right-hand side
element in parentheses in equation [3] must be equal to zero:
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VA =———— | Whichis called the Lorenz gauge
c™ of (4]

—_ —_ 0
dynamic static
state state
contribution contribution

. o . S oL .
According to [4] (the Lorenz gauge criterion), we substitute — VA in —2:7 and find that the
¢ 0

d'Alembertian ([]) for V and A are:

. 1 &V ,
V= VzV——ztﬂ 5 :—_,{),-"' ED
c” ol [5]
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A=V A-———=—uJ
¢ or [6]

These are the general solutions for potentials Aand V.

In vacuum, 2 =J = 0and thus, equations [5] and [6] satisfy the wave equations for V and A as
found for E and B.

Equations [5] and [6] fully satisfy the static state as well, that is to say, .4 =" = 0. Then, we get
the solutions for stationary charge and constant current:

VV=-ple,» VA=—pu,J

which is in agreement with the symmetry between A and V:
V =

pdt A= wJdr
r 4dre, R r 47R


https://en.wikipedia.org/wiki/D%27Alembertian

Retarded Potentials

Equations [5] and [6] demonstrate that in dynamic states ( o and J are time dependent),
potentials propagate in vacuum at the speed of light, and indeed, movement of a charge from
some source point (point of origin) will cause disturbances in potential to reach distance r over
timeT =t - r/c.

That is to say, over time t = 1/¢ from the initial movement of a charge, the disturbance will
propagate distance r. Therefore, under these circumstances each function f(r,t) is converted to
f(r,T)=f(r, t - r/c)

Thus, we say that change in potential at point r is delayed at a rate of r/c (in vacuum), i.e.

V= jp(R 1)t —> j pR.1=r/c)de = [Retarted V]
dre,r Are,r

[7]
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HJ (R 1)dt N .[ pod (R 1 =1/ c)dT = [Retarted A]
dre,r 47 8]

A=

The summation is in the current space, and so is done according to R’.

From the definition of f(r.t) it follows that:
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This equality will be used later.
Now, having the tools to examine the Hertzian dipole, we will follow this sequence:

1. derivation of A
2. derivation of V from A using Lorentz Gauge
3. derivation of E and B using A and V

The following diagram presents an electric dipole antenna:



The changes over time in the electrical dipole which result from the flow of charge along the
antenna are:

P=0dl = Idi
(Current in antenna or generation of spark between the two poles)

Let us calculate A for a wire of dl length using equation [8]

Remember that:

L ldl

A= Than:
f 4mr
pay = Bl LI _ P
47 Ar (10]

According to the figure, 4 (in direction of P, which remains constant in our exercise) has two
possible elements in the plane 7 <> P:



U, [Plcosé
4rr

B 1, [P]sin @
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4 =

(2]

Ar =
[11]

The (-) sign, in the expression Ag, originates in the relation to the axes and the direction of p as
determined in the figure.

And now, to derive V from A, we will use the Lorenz gauge criterion, that is:
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V - 4 is determined by Equation A.15 (spherical coordinates) in the Equations Appendix that

you received.
Ar AB

L g [Pleos@ . 1 1 2 ulP
. [r—(%)]_k_.—_[_u
7 Oor 41 rsin@d 00 41

=T

1 &
V.A=ii sin@sinf| =

From [9] : %f(r,t—£)=—£—> {8—P(f—?”/c)=@o'—=—[f’]/c

or ol or

T

—

. OP 1 1 L [P2sin @cos O
4 cr rsind 4
f,cos@ [Pl [P]. w,cos6 2[P]
= ——"—)— (—)=
4 v re 45 7

mcosd [P 1) 1oV

Ar 7 re ¢’ ot

_ M,cos0

)=

[12]
According to Lorentz gauge criterion

In order to derive V from Equation [12] we will integrate by time and get

AP][P]) Jeosd [P TP])
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Now, having calculated A [11] and V [13], which, by their placement into Equations [1] and [2],
will facilitate derivation of E and B

I. Calculation of E

Equation [1] yields:

E=-4-VV=
cV -
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Arranging the elements by falling powers of 1/r gives:
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Electrical field of static dipole which
decays by 1/1°

Il. Calculation of B

- Z[P]rosﬁf_[ﬁjsinﬁé-

| dregrie Amegric

Induction field. dependent on
current | [P] originating from stable
current in antenna

Decays by 1/1?, as expected with
the field of a wire (proportional to
speed of charge)

[P]sin@ é
dreyre .

Erad

+

[14]

This is the component of
the radiation field
proportional to the
acceleration of the charge
and perpendicular to 7).
It exists in far fields, since
E « 1/ (farfield range
rF>>A4).

From Eq. [2] we get B =V x 4. And now, since 4, =0 (see Eq. [11]) and the independence

from ¢, necessitates %) =0, then in executing CurlA, only the Curl element remains in direction
@]

# and thus, the direction of B is determined, that is B, =(VxA),.

By means of Eq A.16 from the Equations Appendix, we find:

B = (Vxd), = U4 _odr)
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The magnetic
radiation field
proportional to
charge acceleration

and exists when
r>> A
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We see that in near field that is to say very close to the dipole (where the higher powers are
dominant) is where the electrostatic dipole field exists (c1/r*) while B=0, and indeed
corresponds with electrostatic charge distribution.

In slightly more distant fields, the induction field is manifested — the near field in which E and B
exist as fields derived from quasi static currents. In the far fields only the radiation fields remain
and they satisfy the condition for TEM electromagnetic fields, since E is perpendicular to B
and both are perpendicular to 7 .

Calculation of the ratio E/H — vacuum impedance
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Units

J—Joule
C - Coulomb
A — Ampere

The relationship between Erad and Brad (the electric and magnetic radiation fields)

Let us compare the radiation fields E and B by converting #o — . in equation [15] for Brad
0

and get:

Erad =

[P] 15'1’??7963 . Brad - [P] Smggﬁ
dre re’ 472'80?‘C®

[16]



It can be concluded from [16] that at distance r where only the radiation field exists
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(as mentioned, N is defined as surface density of the radiation power or the
Power density=PD).

D. Total radiation power
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E. When the current in dl (dipole antenna) is sinusoidal, then
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|P] =[P, |sinwt
and so: [P] = _[]DO ](92 sIn of = —({)2 [P]

and therefore: [P]: — ({)4[1)]: — (94[1?:] ]: Sillz 04

whereas time averaging gives (< 577 ol >= )
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The average radiation power over time from a radiating dipole can be acquired by substituting
[18] into [17] which yields:

o'[P]*  20'P'ws  @'Plu
(4re, )’ 3(4ne, )’ bme,c’

Intensity I=< P >=

Power
[19]

From Equation [19] we learn that radiation intensity of an antenna is proportional to the fourth
power of radiation frequency (the current in the antenna).

Dependence of Radiation Intensity on Dipole Current

P =Qdl —|P = Idi

if 1 =1,CoS() then

P=1dl = —wl  (sinwt )dl

and therefore:
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[P =1, @ sin” (wt)dl’

<[P]P> =1 w'd" % =1,°(24f )*dI* % =47 fdl* -%Ial =
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[20]
Let us substitute in the power expression [17] the value * LY >t which we obtained in [20]
2 jj : 2'472-: ldll'llrms
<[Power[>, =< ([7]3 > = / - = 5 >
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Therefore, the average power over time can be expressed in terms of dipole current, dipole
length and transmitted wavelength as given by
27 (dIY
) T 2
Intensity(I,, ,A.dl)=" < Power > = — | s
| 3g,c\ A
[21]
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